Skip to main content

Advertisement

Log in

Estrogen Metabolism Modulates Bone Density in Men

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Estrogen is a critical hormone for bone homeostasis in men, but no information is available on the role of estrogen metabolism among men. The aim of this study was to evaluate the effect of estrogen hydroxylation on male bone mineral density (BMD). Participants consisted of 61 healthy Caucasian males (mean age 66.6 ± 1.0 years). Urinary estrogen metabolites were measured by enzyme-linked immunosorbent assay, serum estradiol by ultrasensitive radioimmunoassay, sex hormone binding globulin by radioimmunoassay, and BMD of the lumbar spine and the proximal femur by dual-energy X-ray absorptiometry. Active estrogen metabolites, 16α-hydroxyestrone (16αOHE1) and estriol (E3), positively correlated with adjusted BMD in all regions of the proximal femur (all P < 0.05) but not at the lumbar spine, and those in the highest tertile of urinary 16αOHE1 had the highest BMD. Free estradiol index (FEI) also positively correlated with BMD of the total hip, femoral neck, and intertrochanter (all P < 0.05), while there was no correlation between BMD with inactive metabolites (2−hydroxyestrone and 2-methoxyestrone) and serum testosterone. Multiple regression analysis showed 16αOHE1, FEI, and body mass index are important independent predictors of BMD in all regions of the proximal femur. Estrogen metabolism may modulate BMD in men. Increased urinary 16αOHE1 and E3 levels are associated with high BMD at the proximal femur, and 16αOHE1 appears to be a major determinant of BMD among the metabolites evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  1. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    PubMed  CAS  Google Scholar 

  2. Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ (2000) Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J Clin Endocrinol Metab 85:219–223

    Article  PubMed  CAS  Google Scholar 

  3. Grodin JM, Siiteri PK, MacDonald PC (1973) Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab 36:207–214

    PubMed  CAS  Google Scholar 

  4. Fishman J, Bradlow HL, Gallagher TF (1960) Oxidative metabolism of estradiol. J Biol Chem 235:3104–3107

    PubMed  CAS  Google Scholar 

  5. Martucci C, Fishman J (1977) Direction of estradiol metabolism as a control of its hormonal action - uterotropic activity of estradiol metabolites. Endocrinology 101:1709–1715

    PubMed  CAS  Google Scholar 

  6. Fishman J, Martucci C (1980) Biological properties of 16a-hydroxyestrone: implications in estrogen physiology and pathophysiology. J Clin Endocrinol Metab 51:611–615

    Article  PubMed  CAS  Google Scholar 

  7. Leelawattana R, Ziambaras K, Roodman-Weiss J, et al. (2000) The oxidative metabolism of estradiol conditions postmenopausal bone density and bone loss. J Bone Miner Res 15:2513–2520

    Article  PubMed  CAS  Google Scholar 

  8. Michnovicz JJ, Adlercreutz H, Bradlow HL (1997) Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst 89:718–723

    Article  PubMed  CAS  Google Scholar 

  9. Armamento-Villareal R, Villareal DT, Avioli LV, Civitelli R (1992) Estrogen status and heredity are major determinants of premenopausal bone mass. J Clin Invest 90:2464–2471

    PubMed  CAS  Google Scholar 

  10. Klug TL, Bradlow HL, Sepkovic DW (1994) Monoclonal antibody-based enzyme immunoassay for simultaneous quantitation of 2- and 16 alpha-hydroxyestrone in urine. Steroids 59:648–655

    Article  PubMed  CAS  Google Scholar 

  11. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 86:3162–3165

    Article  PubMed  CAS  Google Scholar 

  12. Napoli N, Villareal DT, Mumm S, et al. (2005) Effect of CYP1A1 gene polymorphisms on estrogen metabolism and bone density. J Bone Miner Res 20:232–239

    Article  PubMed  CAS  Google Scholar 

  13. Smith EP, Boyd J, Frank GR, et al. (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    Article  PubMed  CAS  Google Scholar 

  14. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K (1995) Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80:3689–3698

    Article  PubMed  CAS  Google Scholar 

  15. Carani C, Qin K, Simoni M, et al. (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95

    Article  PubMed  CAS  Google Scholar 

  16. Bilezikian JP, Morishima A, Bell J, Grumbach MM (1998) Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 339:599–603

    Article  PubMed  CAS  Google Scholar 

  17. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  CAS  Google Scholar 

  18. Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  19. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    Article  PubMed  CAS  Google Scholar 

  20. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC (1997) Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 100:1755–1759

    PubMed  CAS  Google Scholar 

  21. Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res 12:1833–1843

    Article  PubMed  CAS  Google Scholar 

  22. Murphy S, Khaw KT, Cassidy A, Compston JE (1993) Sex hormones and bone-mineral density in elderly men. Bone Miner 20:133–140

    Article  PubMed  CAS  Google Scholar 

  23. Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ (2000) Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J Clin Endocrinol Metab 85:219–223

    Article  PubMed  CAS  Google Scholar 

  24. Westerlind KC, Gibson KJ, Malone P, Evans GL, Turner RT (1998) Differential effects of estrogen metabolites on bone and reproductive tissues of ovariectomized rats. J Bone Miner Res 13:1023–1031

    Article  PubMed  CAS  Google Scholar 

  25. Muti P, Bradlow HL, Micheli A, et al. (2000) Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology 11:635–640

    Article  PubMed  CAS  Google Scholar 

  26. Osborne MP, Bradlow HL, Wong GY, Telang NT (1993) Upregulation of estradiol C16 alpha-hydroxylation in human breast tissue: a potential biomarker of breast cancer risk. J Natl Cancer Inst 85:1917–1920

    Article  PubMed  CAS  Google Scholar 

  27. Swaneck GE, Fishman J (1988) Covalent binding of the endogenous estrogen 16 alpha-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc Natl Acad Sci USA 85:7831–7835

    Article  PubMed  CAS  Google Scholar 

  28. Michnovicz JJ, Bradlow HL (1990) Dietary and pharmacological control of estradiol metabolism in humans. Ann N Y Acad Sci 595:291–299

    Article  PubMed  CAS  Google Scholar 

  29. Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J (1986) Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med 315:1305–1309

    Article  PubMed  CAS  Google Scholar 

  30. Michnovicz JJ, Galbraith RA (1991) Cimetidine inhibits catechol estrogen metabolism in women. Metabolism 40:170–174

    Article  PubMed  CAS  Google Scholar 

  31. Michnovicz JJ, Galbraith RA (1990) Effects of exogenous thyroxine on C-2 and C-16 alpha hydroxylations of estradiol in humans. Steroids 55:22–26

    Article  PubMed  CAS  Google Scholar 

  32. Schneider J, Bradlow HL, Strain G, Levin J, Anderson K, Fishman J (1983) Effects of obesity on estradiol metabolism: decreased formation of nonuterotropic metabolites. J Clin Endocrinol Metab 56:973–978

    PubMed  CAS  Google Scholar 

  33. Napoli N, Donepudi S, Sheikh S, Rini GB, Armamento-Villareal R (2005) Increased 2-hydroxylation of estrogen in women with family history of osteoporosis. J Clin Endocrinol Metab 90(4):2035—2041

    Article  PubMed  CAS  Google Scholar 

  34. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC (1997) Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 7:564–569

    PubMed  CAS  Google Scholar 

  35. Lim SK, Won YJ, Lee JH, et al. (1997) Altered hydroxylation of estrogen in patients with postmenopausal osteopenia. J Clin Endocrinol Metab 82:1001–1006

    Article  PubMed  CAS  Google Scholar 

  36. Muti P (2004) The role of endogenous hormones in the etiology and prevention of breast cancer: the epidemiological evidence. Ann N Y Acad Sci 1028:273–282

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health grants R03 AR049401 (to R. A.-V.) and K12 HD01459 (Building Interdisciplinary Research Careers in Women’s Health) and the General Clinical Research Center at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Napoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napoli, N., Faccio, R., Shrestha, V. et al. Estrogen Metabolism Modulates Bone Density in Men. Calcif Tissue Int 80, 227–232 (2007). https://doi.org/10.1007/s00223-007-9014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9014-4

Keywords

Navigation