Skip to main content

Advertisement

Log in

Pathophysiological Role of Endothelin in Ectopic Ossification of Human Spinal Ligaments Induced by Mechanical Stress

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Ossification of the posterior longitudinal ligament (OPLL) of the spine is characterized by progressive ectopic bone formation in the spinal ligament. To identify the genes related to ossification affected by mechanical stress during OPLL, analyses using cDNA microarray were carried out using cultured human spinal ligament cells that had been subjected to uniaxial cyclic stretching. Samples were obtained from a total of 14 patients: seven cervical or thoracic OPLL patients and seven control patients. Spinal ligament cells derived from tissues of OPLL (OPLL cells) and control (non-OPLL cells) patients were subjected to uniaxial sinusoidal cyclic stretching (0.5 Hz, 20% stretch) for various time periods (0–9 hours). cDNA microarrays revealed that ranges of distribution of both up- and downregulated genes evoked by cyclic stretching were significantly wider in OPLL cells than in non-OPLL cells. Increases in the mRNA expression of endothelin-1 (ET-1) as well as various marker genes related to ossification were also observed. mRNA expression of ET-1 and alkaline phosphatase was increased by mechanical stress in a time-dependent manner, while addition of ET-1 to static cultures of OPLL cells increased mRNA expression of alkaline phosphatase in a dose-dependent manner. During 9 hours of cyclic stretching, ET-1 release increased to about sixfold the amount observed in nonstretched cells. In non-OPLL cells, neither cyclic stretching nor ET-1 induced any increase in alkaline phosphatase expression. These results suggest that mechanical stress promotes the progression of ossification in OPLL cells through autocrine and/or paracrine mechanisms of ET-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Baba H, Furusawa N, Fukuda M, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K (1997) Potential role of streptozotocin in enhancing ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur J Histochem 41:191–202

    PubMed  CAS  Google Scholar 

  2. Numasawa T, Koga H, Ueyama K, Maeda S, Sakou T, Harata S, Leppert M, Inoue I (1999) Human retinoic X receptor beta: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J Bone Miner Res 14:500–508

    Article  PubMed  CAS  Google Scholar 

  3. Wang PN, Chen SS, Liu HC, Fuh JL, Kuo BI, Wang SJ (1999) Ossi?cation of the posterior longitudinal ligament of the spine. A case-control risk factor study. Spine 24:142–144

    CAS  Google Scholar 

  4. Furushima K, Shimo-Onoda K, Maeda S, Nobukuni T, Ikari K, Koga H, Komiya S, Nakajima T, Harata S, Inoue I (2002) Large-scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 17:128–137

    Article  PubMed  CAS  Google Scholar 

  5. White AA, Panjabi MM (1990) Clinical Biomechanics of the Spine, 2nd ed. Lippincott-Raven, Philadelphia

    Google Scholar 

  6. Nakamura H (1994) A radiographic study of the progression of ossification of the cervical posterior longitudinal ligament: the correlation between the ossification of the posterior longitudinal ligament and that of the anterior longitudinal ligament. Nippon Seikeigeka Gakkai Zasshi 68:725–730

    PubMed  CAS  Google Scholar 

  7. Takatsu T, Ishida Y, Suzuki K, Inoue H (1999) Radiological study of cervical ossification of the posterior longitudinal ligament. J Spinal Disord 12:271–273

    PubMed  CAS  Google Scholar 

  8. Yamamoto Y, Furukawa K-I, Ueyama K, Nakanishi T, Takigawa M, Harata S (2002) Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine 27:1852–1857

    Article  PubMed  Google Scholar 

  9. Tanno M, Furukawa K-I, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33:475–484

    Article  PubMed  CAS  Google Scholar 

  10. Ohishi H, Furukawa K-I, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S, Toh S (2003) Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther 305:818–824

    Article  PubMed  CAS  Google Scholar 

  11. Iwasaki K, Furukawa K-I, Tanno M, Kusumi T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S, Motomura S (2004) Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 74:448–457

    Article  PubMed  CAS  Google Scholar 

  12. Touyz RM, Schiffrin EL (2003) Role of endothelin in human hypertension. Can J Physiol Pharmacol 81:533–541

    Article  PubMed  CAS  Google Scholar 

  13. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Akikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228

    Article  PubMed  CAS  Google Scholar 

  14. Dao HH, Essalihi R, Graillon JF, Lariviere R, De Champlain J, Moreau P (2002) Pharmacological prevention and regression of arterial remodeling in a rat model of isolated systolic hypertension. J Hypertens 20:1597–1606

    Article  PubMed  CAS  Google Scholar 

  15. Wu SY, Zhang BH, Pan CS, Jiang HF, Pang YZ, Tang CS, Qi YF (2002) Endothelin-1 is a potent regulator in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells. Peptides 24:1149–1156

    Article  Google Scholar 

  16. Sasaki T, Hong MH (1993) Endothelin-1 localization in bone cells and vascular endothelial cells in rat bone marrow. Anat Rec 237:332–337

    Article  PubMed  CAS  Google Scholar 

  17. Lodhi KM, Sakaguchi H, Hirse S, Shibabe S, Hagiwara H (1995) Perichondrial localization of ETA receptor in rat tracheal and xiphoid cartilage and in fetal rat epiphysis. Am J Physiol 268:C496-C502

    PubMed  CAS  Google Scholar 

  18. Kasperk CH, Börscök I, Scairer HU, Schneider U, Nawroth PP, Niethard FU, Ziegler R (1997) Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int 60:368–374

    Article  PubMed  CAS  Google Scholar 

  19. Kitano Y, Kurihara H, Kurihara Y, Maemura K, Ryo Y, Yazaki Y, Harii K (1998) Gene expression of bone matrix proteins and endothelin receptors in endothelin-1-deficient mice revealed by in situ hybridization. J Bone Miner Res 13:237–244

    Article  PubMed  CAS  Google Scholar 

  20. Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K-I, Inoue I (2005) The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 280:8523–8530

    Article  PubMed  CAS  Google Scholar 

  21. Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532-H1538

    PubMed  CAS  Google Scholar 

  22. Nicola CH, Libin J, Catherine CD, Emily MG, Clair AF (2000) A skeletal gene database. J Bone Miner Res 15:2095–2122

    Article  Google Scholar 

  23. Sokolovsky M (1992) Structure-function relationships of endothelins, sarafotoxins, and their receptor subtypes. J Neurochem 59:809–821

    Article  PubMed  CAS  Google Scholar 

  24. Wada K, Tabuchi H, Ohba R, Satoh M, Tachibana Y, Akiyama N, Hiraoka O, Asakura A, Miyamoto C, Furuichi Y (1990) Purification of an endothelin receptor from human placenta. Biochem Biophys Res Commun 167:251–257

    Article  PubMed  CAS  Google Scholar 

  25. Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1998) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  Google Scholar 

  26. Takuwa Y (1993) Endothelin in vascular and endocrine systems: biological activities and its mechanisms of action. Endocr J 40:489–506

    PubMed  CAS  Google Scholar 

  27. Harter LV, Hruska KA, Duncan RL (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormone regulation. Endocrinology 136:528–535

    Article  PubMed  CAS  Google Scholar 

  28. Koga H, Sakou T, Taketomi E, Hayashi K, Numasawa T, Harata S, Yone K, Matsunaga S, Otterud B, Inoue I (1998) Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 62:1460–1467

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K-I, Yoshida K, Ikeda T, Ikegawa S, Hunt SC, Takeda J, Toh S, Harata S, Nakajima T, Inoue I (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73:812–822

    Article  PubMed  CAS  Google Scholar 

  30. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–C278

    PubMed  CAS  Google Scholar 

  31. Lodhi KM, Sakaguchi H, Hirse S, Shibabe S, Hagiwara H (1995) Perichondrial localization of ETA receptor in rat tracheal and xiphoid cartilage and in fetal rat epiphysis. Am J Physiol 268:C496–C502

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Masahiko Tanno and Hirotaka Ohishi of the Department of Orthopedic Surgery, Hirosaki University School of Medicine, for their technical assistance and valuable discussions. We also acknowledge Professors Hiroto Kimura and Hideki Mizunuma and Associate Professor Shinji Nishikawa (Hirosaki University School of Medicine) for their valuable suggestions. This work was supported in part by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan and from the Ministry of Health, Labor, and Welfare. Also, we thank the Karohji-Memorial Aid of Medical Study and Hirosaki University Educational Improvement Promotional Aid for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-I. Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasawa, T., Iwasaki, K., Sawada, T. et al. Pathophysiological Role of Endothelin in Ectopic Ossification of Human Spinal Ligaments Induced by Mechanical Stress. Calcif Tissue Int 79, 422–430 (2006). https://doi.org/10.1007/s00223-006-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0147-7

Keywords

Navigation