Skip to main content
Log in

Calcification Inhibitors and Wnt Signaling Proteins Are Implicated in Bovine Artery Smooth Muscle Cell Calcification in the Presence of Phosphate and Vitamin D Sterols

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Administration of active vitamin D sterols to treat secondary hyperparathyroidism in patients with chronic kidney disease receiving dialysis has been associated with elevated serum calcium and phosphorus levels, which may lead to increased risk of vascular calcification. However, calcimimetics, by binding to the parathyroid gland calcium-sensing receptors, reduce serum parathyroid hormone, calcium, phosphorus, and the calcium-phosphorus product. Using cultured bovine aorta vascular smooth muscle cells (BASMCs), an in vitro model of vascular calcification, we compared calcification levels and gene expression profiles after exposure to the phosphate source ß-glycerolphosphate (BGP), the active vitamin D sterols calcitriol and paricalcitol, the calcimimetic R-568, or BGP with the active vitamin D sterols or R-568. Cells exposed to BGP (10 mM) alone or with calcitriol or paricalcitol showed dose-dependent BASMC calcification. No change in calcification was observed in cultures exposed to BGP with R-568, consistent with the observed lack of calcium-sensing receptor expression. Microarray analysis using total cellular RNA from cultures exposed to vehicle or BGP in the absence and presence of 10−8 M calcitriol or paricalcitol for 7 days showed that cells exposed to BGP with calcitriol or BGP with paricalcitol had virtually identical gene expression profiles, which differed from those of cells treated with BGP or vehicle alone. Several osteoblast- and chondrocyte-associated genes were modulated by BGP and vitamin D exposure. In this study, exposure of BASMCs to phosphate and active vitamin D sterols induced calcification and changes in expression of genes associated with mineralized tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31:607–617

    PubMed  CAS  Google Scholar 

  2. Ribeiro S, Ramos A, Brandao A, Rebelo JR, Guerra A, Resina C, Vila-Lobos A, Carvalho F, Remedio F, Ribeiro F (1998) Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol Dial Transplant 13:2037–2040

    Article  PubMed  CAS  Google Scholar 

  3. Giachelli CM (2004) Mechanisms of vascular calcification in uremia. Semin Nephrol 24:401–402

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15:2857–2867

    Article  PubMed  CAS  Google Scholar 

  5. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494

    Article  PubMed  CAS  Google Scholar 

  6. Moe SM, O’Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, Fineberg N, Kopecky K (2002) Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int 61:638–647

    Article  PubMed  Google Scholar 

  7. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    PubMed  CAS  Google Scholar 

  8. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    PubMed  CAS  Google Scholar 

  9. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366

    Article  PubMed  CAS  Google Scholar 

  10. Henley C, Colloton M, Cattley RC, Shatzen E, Towler DA, Lacey D, Martin D (2005) 1,25-Dihydroxyvitamin D3 but not cinacalcet HCl (Sensipar/Mimpara) treatment mediates aortic calcification in a rat model of secondary hyperparathyroidism. Nephrol Dial Transplant 20:1370–1377

    Article  PubMed  CAS  Google Scholar 

  11. Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38:931–936

    PubMed  CAS  Google Scholar 

  12. Jono S, Nishizawa Y, Shioi A, Morii H (1998) 1,25-Dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone-related peptide. Circulation 98:1302–1306

    PubMed  CAS  Google Scholar 

  13. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, Schinke T, Karsenty G, Giachelli CM (2001) Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res 89:1147–1154

    PubMed  CAS  Google Scholar 

  14. Goodman WG, Frazao JM, Goodkin DA, Turner SA, Liu W, Coburn JW (2000) A calcimimetic agent lowers plasma parathyroid hormone levels in patients with secondary hyperparathyroidism. Kidney Int 58:436–445

    Article  PubMed  CAS  Google Scholar 

  15. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drueke TB, Goodman WG (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    Article  PubMed  CAS  Google Scholar 

  16. Lindberg JS, Culleton B, Wong G, Borah MF, Clark RV, Shapiro WB, Roger SD, Husserl FE, Klassen PS, Guo MD, Albizem MB, Coburn JW (2005) Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol 16:800–807

    Article  PubMed  CAS  Google Scholar 

  17. Mori K, Shioi A, Jono S, Nishizawa Y, Morii H (1998) Expression of matrix Gla protein (MGP) in an in vitro model of vascular calcification. FEBS Lett 433:19–22

    Article  PubMed  CAS  Google Scholar 

  18. Bailie GR, Johnson CA (2002) Comparative review of the pharmacokinetics of vitamin D analogues. Semin Dial 15:352–357

    Article  PubMed  Google Scholar 

  19. Bikle DD, Gee E (1989) Free, and not total, 1,25-dihydroxyvitamin D regulates 25-hydroxyvitamin D metabolism by keratinocytes. Endocrinology 124:649–654

    Article  PubMed  CAS  Google Scholar 

  20. Gurlek A, Pittelkow MR, Kumar R (2002) Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D3: implications in cell growth and differentiation. Endocr Rev 23:763–786

    Article  PubMed  CAS  Google Scholar 

  21. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630

    Article  PubMed  CAS  Google Scholar 

  22. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  PubMed  CAS  Google Scholar 

  23. El Maadawy S, Kaartinen MT, Schinke T, Murshed M, Karsenty G, McKee MD (2003) Cartilage formation and calcification in arteries of mice lacking matrix Gla protein. Connect Tissue Res 44(suppl 1):272–278

    PubMed  CAS  Google Scholar 

  24. Shanahan CM, Weissberg PL (1999) Smooth muscle cell phenotypes in atherosclerotic lesions. Curr Opin Lipidol 10:507–513

    Article  PubMed  CAS  Google Scholar 

  25. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93:2393–2402

    PubMed  CAS  Google Scholar 

  26. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159

    PubMed  CAS  Google Scholar 

  27. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64

    PubMed  CAS  Google Scholar 

  28. Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK (2004) Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 378:1083–1087

    Article  PubMed  CAS  Google Scholar 

  29. Ahmed S, O’Neill KD, Hood AF, Evan AP, Moe SM (2001) Calciphylaxis is associated with hyperphosphatemia and increased osteopontin expression by vascular smooth muscle cells. Am J Kidney Dis 37:1267–1276

    Article  PubMed  CAS  Google Scholar 

  30. Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 1047–1055

  31. Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer LL (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93:2106–2113

    Article  PubMed  CAS  Google Scholar 

  32. Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009

    PubMed  CAS  Google Scholar 

  33. Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178

    PubMed  CAS  Google Scholar 

  34. Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    PubMed  CAS  Google Scholar 

  35. Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15:28–32

    Article  PubMed  CAS  Google Scholar 

  36. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39

    Article  PubMed  CAS  Google Scholar 

  37. Hoang B, Moos M Jr, Vukicevic S, Luyten FP (1996) Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 271:26131–26137

    Article  PubMed  CAS  Google Scholar 

  38. Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu C, Kanatani N, Koike T, Okada H, Komori T, Yoneda T, Church V, Francis-West PH, Kurisu K, Nohno T, Pacifici M, Iwamoto M (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251:142–156

    Article  PubMed  CAS  Google Scholar 

  39. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101:9757–9762

    Article  PubMed  CAS  Google Scholar 

  40. Chimal-Monroy J, Montero JA, Ganan Y, Macias D, Garcia-Porrero JA, Hurle JM (2002) Comparative analysis of the expression and regulation of Wnt5a, Fz4, and Frzb1 during digit formation and in micromass cultures. Dev Dyn 224:314–320

    Article  PubMed  CAS  Google Scholar 

  41. Mao C, Malek OT, Pueyo ME, Steg PG, Soubrier F (2000) Differential expression of rat frizzled-related frzb-1 and frizzled receptor fz1 and fz2 genes in the rat aorta after balloon injury. Arterioscler Thromb Vasc Biol 20:43–51

    PubMed  CAS  Google Scholar 

  42. Schumann H, Holtz J, Zerkowski HR, Hatzfeld M (2000) Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45:720–728

    Article  PubMed  CAS  Google Scholar 

  43. Sage H, Vernon RB, Funk SE, Everitt EA, Angello J (1989) SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca2+-dependent binding to the extracellular matrix. J Cell Biol 109:341–356

    Article  PubMed  CAS  Google Scholar 

  44. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  45. Romberg RW, Werness PG, Riggs BL, Mann KG (1986) Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 25:1176–1180

    Article  PubMed  CAS  Google Scholar 

  46. Nagata T, Goldberg HA, Zhang Q, Domenicucci C, Sodek J (1991) Biosynthesis of bone proteins by fetal porcine calvariae in vitro. Rapid association of sulfated sialoproteins (secreted phosphoprotein-1 and bone sialoprotein) and chondroitin sulfate proteoglycan (CS-PGIII) with bone mineral. Matrix 11:86–100

    PubMed  CAS  Google Scholar 

  47. Kasugai S, Todescan R Jr, Nagata T, Yao KL, Butler WT, Sodek J (1991) Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol 147:111–120

    Article  PubMed  CAS  Google Scholar 

  48. Shanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    PubMed  CAS  Google Scholar 

  49. Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL (2002) High-density lipoprotein regulates calcification of vascular cells. Circ Res 91:570–576

    Article  PubMed  CAS  Google Scholar 

  50. Stompor T, Pasowicz M, Sullowicz W, Dembinska-Kiec A, Janda K, Wojcik K, Tracz W, Zdzienicka A, Klimeczek P, Janusz-Grzybowska E (2003) An association between coronary artery calcification score, lipid profile, and selected markers of chronic inflammation in ESRD patients treated with peritoneal dialysis. Am J Kidney Dis 41:203–211

    Article  PubMed  Google Scholar 

  51. Rao M, Guo D, Perianayagam MC, Tighiouart H, Jaber BL, Pereira NG, Balakrishnan VS (2005) Plasma interleukin-6 predicts cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 45:324–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fred Lott (Amgen, Inc.) for performing the vitamin D assay and William W. Stark, Jr., PhD (Amgen, Inc.), for assistance in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shalhoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalhoub, V., Shatzen, E., Henley, C. et al. Calcification Inhibitors and Wnt Signaling Proteins Are Implicated in Bovine Artery Smooth Muscle Cell Calcification in the Presence of Phosphate and Vitamin D Sterols. Calcif Tissue Int 79, 431–442 (2006). https://doi.org/10.1007/s00223-006-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0126-z

Keywords

Navigation