Skip to main content

Advertisement

Log in

Compatibility of Staining Protocols for Bone Tissue with Raman Imaging

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We report the use of Raman microscopy to image mouse calvaria stained with hematoxylin, eosin and toluidine blue. Raman imaging of stained specimens allows for direct correlation of histological and spectral information. A line-focus 785 nm laser imaging system with specialized near-infrared (NIR) microscope objectives and CCD detector were used to collect approximately 100 × 450 µm Raman images. Principal components analysis, a multivariate analysis technique, was used to determine whether the histological stains cause spectral interference (band shifts or intensity changes) or result in thermal damage to the examined tissue. Image analysis revealed factors for tissue components and the embedding medium, glycol methacrylate, only. Thus, Raman imaging proved to be compatible with histological stains such as hematoxylin, eosin and toluidine blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R Manoharan K Shafer L Perelman J Wu K Chen G Deinum M Fitzmaurice J Myles J Crowe RR Dasari MS Feld (1998) ArticleTitleRaman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol 67 15–22 Occurrence Handle1:CAS:528:DyaK1cXmvVWksA%3D%3D Occurrence Handle9477761

    CAS  PubMed  Google Scholar 

  2. TJ Romer JF Brennan III M Fitzmaurice ML Feldstein G Deinum J Myles JR Kramer RS Lees MS Feld (1998) ArticleTitleHistopathology of human coronary artherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97 878–885 Occurrence Handle1:STN:280:DyaK1c7otVKgsQ%3D%3D Occurrence Handle9521336

    CAS  PubMed  Google Scholar 

  3. M Fitzmaurice (2000) ArticleTitlePrinciples and pitfalls of diagnostic test development: implications for spectroscopic tissue diagnosis. J Biomed Optics 5 119–130 Occurrence Handle10.1117/1.429978 Occurrence Handle1:STN:280:DC%2BD3cvhvFymsw%3D%3D

    Article  CAS  Google Scholar 

  4. G Zonios R Cothren JM Crawford M Fitzmaurice R Manoharan J van Dam MS Feld (.) ArticleTitleSpectral pathology. Ann NY Acad Sci . 108–115

    Google Scholar 

  5. A Carden MD Morris (2000) ArticleTitleApplication of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Optics 5 259–268 Occurrence Handle10.1117/1.429994 Occurrence Handle1:CAS:528:DC%2BD3cXmtFOhu7Y%3D

    Article  CAS  Google Scholar 

  6. LA Opperman RW Passarelli EP Morgan M Reintjes RC Ogle (1995) ArticleTitleCranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. J Bone Miner Res 10 1978–1987

    Google Scholar 

  7. CP Tarnowski MA Ignelzi MD Morris (2002) ArticleTitleMineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17 1118–1126

    Google Scholar 

  8. D-L Lin CP Tarnowski J Zhang J Dai E Rohn AH Patel MD Morris ED Keller (2001) ArticleTitleBone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 47 212–221 Occurrence Handle10.1002/pros.1065 Occurrence Handle1:CAS:528:DC%2BD3MXjvVamt78%3D Occurrence Handle11351351

    Article  CAS  PubMed  Google Scholar 

  9. J Timlin A Carden MD Morris RM Rajachar DH Kohn (2000) ArticleTitleRaman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem 72 2229–2236 Occurrence Handle10.1021/ac9913560 Occurrence Handle1:CAS:528:DC%2BD3cXitlehu7w%3D Occurrence Handle10845368

    Article  CAS  PubMed  Google Scholar 

  10. JA Timlin A Carden MD Morris (1999) ArticleTitleChemical microstructure of cortical bone probed by Raman transects. Appl Spectroscopy 53 1429–1435 Occurrence Handle1:CAS:528:DyaK1MXnsV2rtb4%3D

    CAS  Google Scholar 

  11. TC Bakker Schut GJ Puppels YM Kraan J Greve LLJ van der Maas CG Figdor (1997) ArticleTitleIntracellular cartenoid levels measured by Raman microspectroscopy: comparison of lymphocytes from lung cancer patients and healthy individuals. Int J Cancer 74 20–25 Occurrence Handle10.1002/(SICI)1097-0215(19970220)74:1<20::AID-IJC4>3.3.CO;2-6 Occurrence Handle1:CAS:528:DyaK2sXhvFCgurY%3D Occurrence Handle9036864

    Article  CAS  PubMed  Google Scholar 

  12. TC Bakker Schut MJH Witjes HJCM Sterenborg OC Speelmen JLN Roodenburg ET Marple HA Bruining GJ Puppels (2000) ArticleTitle In vivo detection of dysplastic tissue by Raman spectroscopy. Anal Chem 72 6010–6018 Occurrence Handle10.1021/ac000780u Occurrence Handle1:STN:280:DC%2BD3M%2FptFKqtA%3D%3D Occurrence Handle11140770

    Article  CAS  PubMed  Google Scholar 

  13. R Manoharan Y Wang MS Feld (1996) ArticleTitleHistochemical analysis of biological tissues using Raman spectroscopy. Spectrochim Acta 52 215–249 Occurrence Handle10.1016/0584-8539(95)01573-6

    Article  Google Scholar 

  14. HP Buschman G Deinum JT Motz M Fitzmaurice JR Kramer A van der Laarse AV Bruschke MS Feld (2001) ArticleTitleRaman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc Pathol 10 69–82 Occurrence Handle10.1016/S1054-8807(01)00064-3 Occurrence Handle1:CAS:528:DC%2BD3MXks1Omu7c%3D Occurrence Handle11425600

    Article  CAS  PubMed  Google Scholar 

  15. G Deinum D Rodriguez TJ Römer M Fitzmaurice JR Kramer MS Feld (1999) ArticleTitleHistological classification of Raman spectra of human coronary artery atherosclerosis using principal component analysis. Appl Spectroscopy 53 938–942 Occurrence Handle1:CAS:528:DyaK1MXls1Slu7w%3D

    CAS  Google Scholar 

  16. P Lasch W Haensch EN Lewis LH Kidder D Naumann (2002) ArticleTitleCharacterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Appl Spectroscopy 56 1–9 Occurrence Handle1:CAS:528:DC%2BD38XhsVKnsLo%3D

    CAS  Google Scholar 

  17. PO Gerrits MBM van Leeuwen (1987) ArticleTitleGlycol methacrylate embedding in histotechnology: the hematoxylin-eosin stain as a method for assessing the stability of glycol methacrylate sections. Stain Technol 62 181–190 Occurrence Handle1:CAS:528:DyaL2sXkvFaqsLo%3D Occurrence Handle2441495

    CAS  PubMed  Google Scholar 

  18. JM Shaver KA Christensen JA Pezzuti MD Morris (1998) ArticleTitleStructure of dihydrogen phosphate ion aggregates by Raman-monitored serial dilution. Appl Spectroscopy 52 259–264 Occurrence Handle1:CAS:528:DyaK1cXhsVyjtbc%3D

    CAS  Google Scholar 

  19. ER Malinowski (2002) Factor analysis in chemistry. John Wiley and Sons New York

    Google Scholar 

  20. PJ Treado MD Morris (1989) ArticleTitleA 1000 points of light - the Hadamard-transform in chemical analysis and instrumentation. Anal Chem 61 723A Occurrence Handle1:CAS:528:DyaL1MXktlakt7g%3D Occurrence Handle2757209

    CAS  PubMed  Google Scholar 

  21. D Zhang JD Hanna Y Jiang D Ben-Amotz (2001) ArticleTitleInfluence of laser illumination geometry on the power distribution advantage. Appl Spectroscopy 55 61–65 Occurrence Handle1:CAS:528:DC%2BD3MXhtFeqtLs%3D

    CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by NIH DE11530 (to M.A.I), NIH AR47969 (to M.D.M.), U.S. Army Research Office DAMD17-01-1-0809 (to M.D.M.), and University of Michigan Rackham School of Graduate Studies Summer Research Opportunity Program Fellowship (L.E.G.). The authors would like to thank John Baker (University of Michigan) for his assistance with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M.D., Crane, N.J., Gomez, L.E. et al. Compatibility of Staining Protocols for Bone Tissue with Raman Imaging . Calcif Tissue Int 74, 86–94 (2004). https://doi.org/10.1007/s00223-003-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-003-0038-0

Keywords

Navigation