Skip to main content
Log in

Bach-flat asymptotically locally Euclidean metrics

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We obtain a volume growth and curvature decay result for various classes of complete, noncompact Riemannian metrics in dimension 4; in particular our method applies to anti-self-dual or Kähler metrics with zero scalar curvature, and metrics with harmonic curvature. Similar results were obtained for Einstein metrics in [And89], [BKN89], [Tia90], but our analysis differs from the Einstein case in that (1) we consider more generally a fourth order system in the metric, and (2) we do not assume any pointwise Ricci curvature bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: The geometry of weakly self-dual Kähler surfaces. Compos. Math. 135, 279–322 (2003)

    Google Scholar 

  2. Akutagawa, K.: Yamabe metrics of positive scalar curvature and conformally flat manifolds. Differ. Geom. Appl. 4, 239–258 (1994)

    Google Scholar 

  3. Anderson, M.T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc. 2, 455–490 (1989)

    Google Scholar 

  4. Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 112–135 (1921)

    Google Scholar 

  5. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39, 661–693 (1986)

    MathSciNet  Google Scholar 

  6. Bishop, R.L., Crittenden, R.J.: Geometry of manifolds. New York: Academic Press 1964

  7. Besse, A.L.: Einstein manifolds. Berlin: Springer 1987

  8. Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97, 313–349 (1989)

    Google Scholar 

  9. Bourguignon, J.P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63, 263–286 (1981)

    Google Scholar 

  10. Branson, T.: Kato constants in Riemannian geometry. Math. Res. Lett. 7, 245–261 (2000)

    Google Scholar 

  11. Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, pp. 259–290. Princeton, NJ: Princeton Univ. Press 1982

  12. Carron, G.: Inégalités isopérimétriques de Faber-Krahn et conséquences. Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Vol. 1 of Sémin. Congr., pp. 205–232. Paris: Soc. Math. France 1996

  13. Carron, G.: Une suite exacte en L2-cohomologie. Duke Math. J. 95, 343–372 (1998)

    Google Scholar 

  14. Carron, G.: L2-cohomologie et inégalités de Sobolev. Math. Ann. 314, 613–639 (1999)

    Google Scholar 

  15. Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Google Scholar 

  16. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    Google Scholar 

  17. Carron, G., Herzlich, M.: The Huber theorem for non-compact conformally flat manifolds. Comment. Math. Helv. 77, 192–220 (2002)

    Google Scholar 

  18. Chang, S.C.: Critical Riemannian 4-manifolds. Math. Z. 214, 601–625 (1993)

    Google Scholar 

  19. Chavel, I.: Riemannian geometry—a modern introduction. Cambridge: Cambridge University Press 1993

  20. Calderbank, D.M.J., Singer, M.A.: Einstein metrics and complex singularities. Invent. Math. 156, 405–443 (2004)

    Google Scholar 

  21. Cheeger, J., Tian, G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118, 493–571 (1994)

    Google Scholar 

  22. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49, 405–433 (1983)

    Google Scholar 

  23. Derdziński, A.: Riemannian manifolds with harmonic curvature. Global differential geometry and global analysis 1984 (Berlin, 1984), pp. 74–85. Berlin: Springer 1985

  24. Donaldson, S., Friedman, R.: Connected sums of self-dual manifolds and deformations of singular spaces. Nonlinearity 2, 197–239 (1989)

    Google Scholar 

  25. Eschenburg, J.-H., Schroeder, V.: Riemannian manifolds with flat ends. Math. Z. 196, 573–589 (1987)

    Google Scholar 

  26. Floer, A. (1991): Self-dual conformal structures on lCP2. J. Differ. Geom. 33, 551–573 (1987)

    Google Scholar 

  27. Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Berlin: Springer 1979

  28. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Google Scholar 

  29. Hebey, E.: Sobolev spaces on Riemannian manifolds. Lect. Notes Math., vol. 1635. Berlin: Springer 1996

  30. Hitchin, N.J.: Einstein metrics and the eta-invariant. Boll. Unione Mat. Ital., Sez. B (7) 11, 95–105 (1997)

  31. Itoh, J.-i., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. (2) 50, 571–575 (1998)

    Google Scholar 

  32. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29, 665–683 (1989)

    Google Scholar 

  33. Kovalev, A., Singer, M.: Gluing theorems for complete anti-self-dual spaces. Geom. Funct. Anal. 11, 1229–1281 (2001)

    Google Scholar 

  34. LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)

    Google Scholar 

  35. LeBrun, C.: Explicit self-dual metrics on CP2#...#CP2. J. Differ. Geom. 34, 223–253 (1991)

    Google Scholar 

  36. LeBrun, C.: Anti-self-dual metrics and Kähler geometry. Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 498–507. Basel: Birkhäuser 1995

  37. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc., New Ser. 17, 37–91 (1987)

    Google Scholar 

  38. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optimization 47, 1–25 (2003)

    Google Scholar 

  39. Nakajima, H.: Hausdorff convergence of Einstein 4-manifolds. J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 35, 411–424 (1988)

    Google Scholar 

  40. Nakajima, H.: Self-duality of ALE Ricci-flat 4-manifolds and positive mass theorem. Recent topics in differential and analytic geometry, pp. 385–396. Boston, MA: Academic Press (1990)

  41. Ozols, V.: Cut loci in Riemannian manifolds. Tôhoku Math. J. (2) 26, 219–227 (1974)

  42. Petersen, P.: Riemannian geometry. New York: Springer 1998

  43. Poon, Y.S.: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom. 24, 97–132 (1986)

    MATH  Google Scholar 

  44. Råde, J.: Decay estimates for Yang-Mills fields; two new proofs. Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA, 1992), pp. 91–105. Houston, TX: Publish or Perish 1993

  45. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Google Scholar 

  46. Schoen, R.M.: On the number of constant scalar curvature metrics in a conformal class. Differential geometry, pp. 311–320. Harlow: Longman Sci. Tech. 1991

  47. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981)

    MATH  Google Scholar 

  48. Schoen, R., Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)

    Google Scholar 

  49. Schoen, R., Yau, S.-T.: Lectures on differential geometry. Cambridge, MA: International Press 1994

  50. Taubes, C.H.: The existence of anti-self-dual conformal structures. J. Differ. Geom. 36, 163–253 (1992)

    Google Scholar 

  51. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

    Google Scholar 

  52. Uhlenbeck, K.K.: Connections with Lp bounds on curvature. Commun. Math. Phys. 83, 31–42 (1982)

    Google Scholar 

  53. Uhlenbeck, K.K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys. 83, 11–29 (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Tian or Jeff Viaclovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Viaclovsky, J. Bach-flat asymptotically locally Euclidean metrics. Invent. math. 160, 357–415 (2005). https://doi.org/10.1007/s00222-004-0412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0412-1

Keywords

Navigation