Skip to main content
Log in

Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract.

Fatigue-associated changes in the excitability of central motor mechanisms were investigated using transcranial magnetic stimulation (TMS) of the motor cortex. Test stimuli were applied before, during and after a voluntary fatigue test of the first dorsal interosseus muscle (FDI). Subjects were required to maintain 50% of their maximum voluntary force (MVC) for at least 2 min (1/2-MVC test) and electromyographic (EMG) reactions of FDI were measured with surface electrodes. Prior to the test, TMS pulses of 70% maximum output (about 1.4 T) produced muscle-evoked potentials (MEPs) of widely different amplitudes in different subjects, ranging from 13% to 55% of the maximum compound action potential (M-wave) evoked by ulnar nerve stimulation. During the test, MEPs of all subjects showed a potentiation; this effect was markedly greater in subjects with a small initial MEP. After the test, the differential degrees of contraction-evoked potentiation still influenced the MEP amplitudes; small pre-test MEPs showed a post-test net potentiation and larger pre-test MEPs showed a net post-test depression. The results underline that the net outcome of motor activation on motor cortex excitability, as studied with TMS, depends on a complex balance of fatiguing and potentiating effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijdewind, I., Zwarts, M. & Kernell, D. Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Exp Brain Res 130, 529–532 (2000). https://doi.org/10.1007/s002219900268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002219900268

Navigation