Skip to main content

Advertisement

Log in

Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The prefrontal cortex (PFC) plays an important role in several cognitive functions, such as planning, decision making, and social behavior. We previously reported that periodontal sensory input significantly increases PFC activity during the motor task of maintaining occlusal (biting) force. However, the relationships between periodontal sensation, PFC activity, and the performance of motor tasks have not been evaluated in detail. Therefore, using functional near-infrared spectroscopy, we investigated PFC activity by monitoring changes in cerebral blood flow (CBF) to specific areas of the PFC that corresponded to changes in occlusal force generated during four different biting tasks: (1) occlusion with the central incisor with an interocclusal distance of 5 mm (BI-5 mm); or (2) 10 mm (BI-10 mm); (3) occlusion with the first molars with an interocclusal distance of 5 mm (BM-5 mm), or (4) 10 mm (BM-10 mm). Occlusion of molars generated increased PFC regional CBF as the interocclusal distance decreased (BM-10 mm vs BM-5 mm). No significant differences in CBF during occlusion of incisors were found when comparing 5 mm and 10 mm intercostal distances (BI-5 mm vs BI-10 mm). The mean occlusal force generated by BM-5 mm occlusion was significantly lower than that generated by BM-10 mm occlusion. Taken together, our results suggest that the PFC decreases efferent signaling to motor units, to reduce occlusal force generated when periodontal sensation, which is greater when the interocclusal distance is reduced, is primarily responsible for maintaining occlusal force in the absence of sensations from the temporomandibular joint and muscle spindles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott RD, White LR, Ross GW, Masaki KH, Curb JD, Petrovitch H (2004) Walking and dementia in physically capable elderly men. JAMA 292(12):1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Disease International (2015) World Alzheimer report 2015 https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf. Accessed 19 Jan 2019

  • Batty GD, Li Q, Huxley R et al (2013) Oral disease in relation to future risk of dementia and cognitive decline: prospective cohort study based on the action in diabetes and vascular disease: preterax and diamicron modified-release controlled evaluation (ADVANCE) trial. Eur Psychiatry 28(1):49–52

    Article  PubMed  Google Scholar 

  • Brodin P, Türker KS, Miles TS (1993) Mechanoreceptors around the tooth evoke inhibitory and excitatory reflexes in the human masseter muscle. J Physiol 464:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen J, Morimoto T (1977) Dimension discrimination at two different degrees of mouth opening and effect of an anesthesia applied to the periodontal ligaments. J Oral Rehabil 4(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  • Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR (1994) The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264(5162):1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Goldberg LJ (1971) Masseter muscle excitation induced by stimulation of periodontal and gingival receptors in man. Brain Res 32(2):369–381

    Article  CAS  PubMed  Google Scholar 

  • Gosen AJ (1974) Mandibular leverage and occlusion. J Prosthet Dent 31(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Hidaka O, Morimoto T, Kato T, Masuda Y, Inoue T, Takada K (1999) Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol 82(5):2633–2640

    Article  CAS  PubMed  Google Scholar 

  • Higaki N, Goto T, Ichikawa T (2016) Periodontal tactile input activates the prefrontal cortex. Sci Rep 6:36893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberger M, Yew B, Gilardoni S et al (2014) Ventromedial-frontopolar prefrontal cortex atrophy correlates with insight loss in frontotemporal dementia and Alzheimer’s disease. Hum Brain Mapp 35(2):616–626

    Article  PubMed  Google Scholar 

  • Iida T, Kato M, Komiyama O et al (2010) Comparison of cerebral activity during teeth clenching and fist clenching: a functional magnetic resonance imaging study. Eur J Oral Sci 118(6):635–641

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Komiyama O, Obara R, Baad-Hansen L, Kawara M, Svensson P (2014) Repeated clenching causes plasticity in corticomotor control of jaw muscles. Eur J Oral Sci 122(1):42–48

    Article  PubMed  Google Scholar 

  • Ikuta M, Iida T, Kothari M, Shimada A, Komiyama O, Svensson P (2019) Impact of sleep bruxism on training-induced cortical plasticity. J Prosthodont Res 63(3):277–282

    Article  PubMed  Google Scholar 

  • Inoue H, Morimoto T, Kawamura Y (1981) Response characteristics an classification of muscle spindles of the masseter muscle in the cat. Exp Neurol 74(2):548–560

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Trulsson M, Olsson KA, Abbs JH (1988) Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. Exp Brain Res 72(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Kaye EK, Valencia A, Baba N, Spiro A 3rd, Dietrich T, Garcia RI (2010) Tooth loss and periodontal disease predict poor cognitive function in older men. J Am Geriatr Soc 58(4):713–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimoto K, Ono Y, Tachibana A et al (2011) Chewing-induced regional brain activity in edentulous patients who received mandibular implant-supported overdentures: a preliminary report. J Prosthodont Res 55(2):89–97

    Article  PubMed  Google Scholar 

  • Lund JP, Kolta A (2006) Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia 21(3):167–174

    Article  PubMed  Google Scholar 

  • Lund JP, Kolta A, Westberg KG, Scott G (1998) Brainstem mechanisms underlying feeding behaviors. Curr Opin Neurobiol 8(6):718–724

    Article  CAS  PubMed  Google Scholar 

  • Maeda T (1994) Sensory innervation of the periodontal ligament in the incisor and molar of the monkey, Macaca fuscata. An immunohistochemical study for neurofilament protein and glia-specific S-100 protein. Arch Histol Jpn 50(4):437–454

    Article  Google Scholar 

  • Manly RS, Pfaffman C, Lathrop DD, Keyser J (1952) Oral sensory thresholds of persons with natural and artificial dentition. J Dent Res 31(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Taneichi K, Matsumoto A et al (2003) Hypoactivation of the prefrontal cortex during verbal fluency test in PTSD: a near-infrared spectroscopy study. Psychiatry Res 124(1):1–10

    Article  PubMed  Google Scholar 

  • Miller EK, Choen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res 109(2):240–250

    Article  CAS  PubMed  Google Scholar 

  • Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A (2012) Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 96(3):340–355

    Article  CAS  PubMed  Google Scholar 

  • Pinti P, Cardone D, Merla A (2015) Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity. Sci Rep 5:17471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabri O, Ringelstein EB, Hellwig D et al (1999) Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke 30(3):556–566

    Article  CAS  PubMed  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298(1089):199–209

    Article  CAS  PubMed  Google Scholar 

  • Takada T, Miyamoto T (2004) A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett 360(3):137–140

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Kanayama T, Yoshida S, Kawasaki T (2002) Analysis of brain activity during clenching by fMRI. J Oral Rehabil 29:467–472

    Article  CAS  PubMed  Google Scholar 

  • Trulsson M, Johansson RS (1994) Encoding of amplitude and rate of forces applied to the teeth by human periodontal mechanoreceptive afferents. J Neurophysiol 72(4):1734–1744

    Article  CAS  PubMed  Google Scholar 

  • Türker KS, Brodin P, Miles TS (1994) Reflex responses of motor units in human masseter muscle to mechanical stimulation of a tooth. Exp Brain Res 100(2):307–315

    Article  PubMed  Google Scholar 

  • Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F (2004) Physical activity, including walking, and cognitive function in older women. JAMA 292(12):1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K (2001) A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med 16:1703–1708

    Article  Google Scholar 

  • Yamamoto T, Kondo K, Hirai H, Nakade M, Aida J, Hirata Y (2012) Association between self-reported dental health status and onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosom Med 74(3):241–248

    Article  PubMed  Google Scholar 

  • Zhang H, Kumar A, Kothari M et al (2016) Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles? Exp Brain Res 234(7):1935–1943

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaharu Goto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, T., Goto, T. & Ichikawa, T. Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force. Exp Brain Res 237, 2767–2774 (2019). https://doi.org/10.1007/s00221-019-05630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05630-y

Keywords

Navigation