Skip to main content

Advertisement

Log in

Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Astrocytes have now been well accepted to play important roles in epileptogenesis by controlling gliotransmitter release and neuronal excitability, contributing to blood–brain barrier dysfunction and involving in brain inflammation. Recent studies indicate that abnormal expression of gap junction protein connexin (Cx) may also be a contributing factor for seizure generation. To further address this issue, we investigated the progressive changes of Cx 43 and Cx 40 in the mouse hippocampus at 4 h, 1 day, 1 week and 2 months during and after pilocarpine-induced status epilepticus (PISE). The co-localization of Cx 43 and Cx 40 with glial fibrillary acidic protein (GFAP) was also examined. We observed that Cx 43 and Cx 40 protein expression remained unaltered at 4 h during and at 1 day (acute stage) after PISE. However, their expression was significantly increased in CA1 and CA3 areas and in the dentate gyrus at 1 week (latent stage) and 2 months (chronic stage) after PISE. Double immunofluorescence labeling indicated the localization of Cx 43 and Cx 40 in astrocytes. Combined with progressive neuronal loss in the mouse hippocampus, our results suggest that the increase in gap junctions in the neuronoglial syncytium of reactive astrocytes may be implicated in synchronization of hippocampal hyperactivity leading to neuronal loss and epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvestad S, Hammer J, Qu H, Haberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 31:1675–1686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carmignoto G, Fellin T (2006) Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus. J Physiol Paris 99:98–102

    Article  CAS  PubMed  Google Scholar 

  • Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sochivko D, Beck H, Marechal D, Wiestler OD, Becker AJ (2001) Activity-induced expression of common reference genes in individual cns neurons. Lab Invest 81:913–916

    Article  CAS  PubMed  Google Scholar 

  • Condorelli DF, Trovato-Salinaro A, Mudo G, Mirone MB, Belluardo N (2003) Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 18:1807–1827

    Article  PubMed  Google Scholar 

  • Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    Article  CAS  PubMed  Google Scholar 

  • Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther 103:95–108

    Article  PubMed  Google Scholar 

  • de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438

    Article  PubMed  Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    Article  CAS  PubMed  Google Scholar 

  • Elisevich K, Rempel SA, Smith BJ, Edvardsen K (1997) Hippocampal connexin 43 expression in human complex partial seizure disorder. Exp Neurol 145:154–164

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, Basilio D, Saez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MV, Berman JW (2012) The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 7:499–518

    Article  PubMed Central  PubMed  Google Scholar 

  • Figley CR, Stroman PW (2011) The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588

    Article  PubMed  Google Scholar 

  • Fonseca CG, Green CR, Nicholson LF (2002) Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res 929:105–116

    Article  CAS  PubMed  Google Scholar 

  • Froger N, Orellana JA, Calvo CF, Amigou E, Kozoriz MG, Naus CC, Saez JC, Giaume C (2010) Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci 45:37–46

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, Froger N, Koulakoff A (2005) Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim 24:695–696

    Article  CAS  PubMed  Google Scholar 

  • Goffin K, Nissinen J, Van Laere K, Pitkanen A (2007) Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol 205:501–505

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, Brondi M, Vetri F, Uva L, Pozzan T, de Curtis M, Ratto GM, Carmignoto G (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8:e1000352

    Article  PubMed Central  PubMed  Google Scholar 

  • Hassinger TD, Atkinson PB, Strecker GJ, Whalen LR, Dudek FE, Kossel AH, Kater SB (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J Neurobiol 28:159–170

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff F, Dringen R, Giaume C (2001) Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci 251:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, Willecke K, Naus CC (2010) The connexin43 C-terminal region mediates neuroprotection during stroke. J Neuropathol Exp Neurol 69:196–206

    Article  CAS  PubMed  Google Scholar 

  • Kumaria A, Tolias CM, Burnstock G (2008) ATP signalling in epilepsy. Purinergic Signal 4:339–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Huttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhauser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106:11336–11341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481

    Article  PubMed  Google Scholar 

  • Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, Haubrich S, Willecke K, Goldman SA, Nedergaard M (2002) Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22:4302–4311

    CAS  PubMed  Google Scholar 

  • Lutz SE, Raine CS, Brosnan CF (2012) Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 245:8–14

    Article  CAS  PubMed  Google Scholar 

  • Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074

    Article  PubMed Central  PubMed  Google Scholar 

  • Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52:142–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCracken CB, Roberts DC (2006) A single evoked afterdischarge produces rapid time-dependent changes in connexin36 protein expression in adult rat dorsal hippocampus. Neurosci Lett 405:84–88

    Article  CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakase T, Naus CC (2004) Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 1662:149–158

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Article  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  • Nemani VM, Binder DK (2005) Emerging role of gap junctions in epilepsy. Histol Histopathol 20:253–259

    CAS  PubMed  Google Scholar 

  • O’Connor ER, Sontheimer H, Spencer DD, de Lanerolle NC (1998) Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 39:347–354

    Article  PubMed  Google Scholar 

  • Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plotkin LI, Bellido T (2001) Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Commun Adhes 8:377–382

    Article  CAS  PubMed  Google Scholar 

  • Priest CA, Thompson AJ, Keller A (2001) Gap junction proteins in inhibitory neurons of the adult barrel neocortex. Somatosens Mot Res 18:245–252

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulationII. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Front Comput Neurosci 6:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI (2008) A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol Dis 31:198–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Samoilova M, Wentlandt K, Adamchik Y, Velumian AA, Carlen PL (2008) Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol 210:762–775

    Article  CAS  PubMed  Google Scholar 

  • Scemes E, Dermietzel R, Spray DC (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24:65–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schroder W, Hinterkeuser S, Seifert G, Schramm J, Jabs R, Wilkin GP, Steinhauser C (2000) Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41(Suppl 6):S181–S184

    Article  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Spray DC (1996) Physiological properties of gap junction channels in the nervous system. In: Spray DC, Dermietzel R (eds) Gap junctions in the nervous system. R.G. Landes Company, Georgetown, TX

    Google Scholar 

  • Steinhauser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60:1192–1202

    Article  PubMed  Google Scholar 

  • Takahashi DK, Vargas JR, Wilcox KS (2010) Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 40:573–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang FR, Lee WL, Yang J, Sim MK, Ling EA (2001) Expression of metabotropic glutamate receptor 1alpha in the hippocampus of rat pilocarpine model of status epilepticus. Epilepsy Res 46:179–189

    Article  CAS  PubMed  Google Scholar 

  • Tang FR, Chia SC, Chen PM, Gao H, Lee WL, Yeo TS, Burgunder JM, Probst A, Sim MK, Ling EA (2004a) Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res 59:167–180

    Article  CAS  PubMed  Google Scholar 

  • Tang FR, Lee WL, Gao H, Chen Y, Loh YT, Chia SC (2004b) Expression of different isoforms of protein kinase C in the rat hippocampus after pilocarpine-induced status epilepticus with special reference to CA1 area and the dentate gyrus. Hippocampus 14:87–98

    Article  CAS  PubMed  Google Scholar 

  • Thi MM, Islam S, Suadicani SO, Spray DC (2012) Connexin43 and pannexin1 channels in osteoblasts: who is the “hemichannel”? J Membr Biol 245:401–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    Article  CAS  PubMed  Google Scholar 

  • Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:304

    Article  PubMed Central  PubMed  Google Scholar 

  • Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58:168–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    CAS  PubMed  Google Scholar 

  • Zador Z, Weiczner R, Mihaly A (2008) Long-lasting dephosphorylation of connexin 43 in acute seizures is regulated by NMDA receptors in the rat cerebral cortex. Mol Med Rep 1:721–727

    CAS  PubMed  Google Scholar 

  • Zanotti S, Charles A (1997) Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signaling. J Neurochem 69:594–602

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Khanna S, Tang FR (2009) Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. J Neurosci Res 87:1135–1149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dong-Liang Ma in our laboratory for his expert technique assistance and Prof. Dwight C. German from University of Texas Southwestern Medical Center for his comments on the manuscript. Singhealth Research Foundation, National Medical Research Council of Singapore; Grant Nos.: SHF/FG382P/2007, NMRC/0960/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Tang.

Additional information

Y. C. Tang Already left National Neuroscience Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.L., Tang, Y.C., Lu, Q.Y. et al. Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Exp Brain Res 233, 1529–1539 (2015). https://doi.org/10.1007/s00221-015-4226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4226-8

Keywords

Navigation