Skip to main content
Log in

Modelling the differential effects of prisms on perception and action in neglect

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Damage to the right parietal cortex often leads to a syndrome known as unilateral neglect in which the patient fails to attend or respond to stimuli in left space. Recent work attempting to rehabilitate the disorder has made use of rightward-shifting prisms that displace visual input further rightward. After a brief period of adaptation to prisms, many of the symptoms of neglect show improvements that can last for hours or longer, depending on the adaptation procedure. Recent work has shown, however, that differential effects of prisms can be observed on actions (which are typically improved) and perceptual biases (which often remain unchanged). Here, we present a computational model capable of explaining some basic symptoms of neglect (line bisection behaviour), the effects of prism adaptation in both healthy controls and neglect patients and the observed dissociation between action and perception following prisms. The results of our simulations support recent contentions that prisms primarily influence behaviours normally thought to be controlled by the dorsal stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5:457–469

    Article  CAS  PubMed  Google Scholar 

  • Anderson B (1996) A mathematical model of line bisection behaviour in neglect. Brain 119:841–850

    Article  PubMed  Google Scholar 

  • Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965

    CAS  PubMed  Google Scholar 

  • Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17:2479–2490

    Article  PubMed  Google Scholar 

  • Bonato M, Priftis K, Umiltà C, Zorzi M (2013) Computer-based attention-demanding testing unveils severe neglect in apparently intact patients. Behav Neurol 26:179–181

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum LJ, Dawson AM, Linsley D (2012) Reliability and validity of the Virtual Reality Lateralized Attention Test in assessing hemispatial neglect in right-hemisphere stroke. Neuropsychology 26:430–441

    Article  PubMed  Google Scholar 

  • Carlomagno S, Parlato V, Belfiore A, Silvano A, Vanderlinden M, Seron X (1993) Patterns of line bisection in patients suffering from unilateral spatial neglect. Acta Neurol 15:241–252

    CAS  Google Scholar 

  • Chechlacz M, Rotshtein P, Bickerton W-L, Hansen PC, Deb S, Humphreys GW (2010) Separating neural correlates of allocentric and egocentric neglect: distinct cortical sites and common white matter disconnections. Cogn Neuropsychol 27:277–303

    Article  PubMed  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621

    Article  CAS  PubMed  Google Scholar 

  • Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15:913–920

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  CAS  PubMed  Google Scholar 

  • Danckert J (2013) Spatial neglect: not simply disordered attention. In: Schweizer T, MacDonald RL (eds) The behavioural consequences of stroke. Springer, New York

    Google Scholar 

  • Danckert J, Ferber S (2006) Revisiting unilateral neglect. Neuropsychologia 44:987–1006

    Article  PubMed  Google Scholar 

  • Danckert J, Ferber S, Goodale MA (2008) Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci 28:1696–1704

    Article  PubMed  Google Scholar 

  • Danckert J, Stöttinger E, Anderson B (2012) Neglect as a disorder of representational updating. In: Spiteri Y, Galea EM (eds) Psychology of neglect. NOVA Science Publishers, New York, pp 1–28

    Google Scholar 

  • Dijkerman HC, McIntosh RD, Milner AD, Rossetti Y, Tilikete C, Roberts RC (2003) Ocular scanning and perceptual size distortion in hemineglect: effects of prism adaptation and sequential stimulus presentation. Exp Brain Res 153:220–230

    Article  PubMed  Google Scholar 

  • Doricchi F, Thiebaut de Schotten M, Tomaiuolo F, Bartolomeo P (2008) White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex 44:983–995

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    Article  PubMed  Google Scholar 

  • Eliasmith C, Anderson C (2003) Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge

    Google Scholar 

  • Farnè A, Rossetti Y, Toniolo S, Làdavas E (2002) Ameliorating neglect with prism adaptation: visuo-manual and visuo-verbal measures. Neuropsychologia 40:718–729

    Article  PubMed  Google Scholar 

  • Ferber S, Murray LJ (2005) Are perceptual judgements dissociated from motor processes? A prism adaptation study. Cogn Brain Res 23:453–456

    Article  Google Scholar 

  • Ferber S, Danckert J, Joanisse M, Goltz HC, Goodale MA (2003) Eye movements tell only half the story. Neurology 60:1826–1829

    Article  CAS  PubMed  Google Scholar 

  • Fink G, Halligan P, Marshall J, Frith C, Frackowiak R, Dolan R (1996) Where in the brain does visual attention select the forest and the trees? Nature 382:626–628

    Article  CAS  PubMed  Google Scholar 

  • Frassinetti F, Angelini V, Meneghello F, Avanzi S, Ladavas E (2002) Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain 125:608–623

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Halligan PW, Marshall JC (1993) The bisection of horizontal and radial lines: a case study of normal controls and ten patients with left visuospatial neglect. J Neurosci 70:149–167

    CAS  Google Scholar 

  • Harvey M, Milner AD (1999) Residual perceptual distortion in ‘recovered’ hemispatial neglect. Neuropsychologia 37:745–750

    Article  CAS  PubMed  Google Scholar 

  • Harvey M, Milner AD, Roberts RC (1995) An investigation of hemispatial neglect using the landmark task. Brain Cogn 27:59–78

    Article  CAS  PubMed  Google Scholar 

  • Harvey M, Jackson SR, Newport R, Krämer T, Morris DL, Dow L (2001) Is grasping impaired in hemispatial neglect? Behav Neurol 13:17–28

    Article  PubMed  Google Scholar 

  • Heilman K, Van Den Abell T (1980) Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention. Neurology 30(327):330

    Google Scholar 

  • Heilman KM, Watson RT, Valenstein E (1993) Neglect and related disorders. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology. Oxford University Press, New York, pp 279–336

    Google Scholar 

  • Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38:93–110

    Article  CAS  PubMed  Google Scholar 

  • Karnath H-O, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953

    Article  CAS  PubMed  Google Scholar 

  • Karnath HO, Fruhmann Berger M, Küker W, Rorden C (2004) The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 14:1164–1172

    Article  PubMed  Google Scholar 

  • Kerkhoff G (2001) Spatial hemineglect in humans. Prog Neurobiol 63:1–27

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Heller W, Banich MT, Burton LA (1983) Asymmetry of perception in free viewing of chimaeric faces. Brain Cogn 2:404–419

    Article  CAS  PubMed  Google Scholar 

  • Luauté J, Michel C, Rode G, Pisella L, Jacquin-Courtois S, Costes N, Cotton F, le Bars D, Boisson D, Halligan P, Rossetti Y (2006a) Functional anatomy of the therapeutic effects of prism adaptation on left neglect. Neurology 66:1859–1867

    Article  PubMed  Google Scholar 

  • Luauté J, Halligan P, Rode G, Rossetti Y, Boisson D (2006b) Visuo-spatial neglect: a systematic review of current interventions and their effectiveness. Neurosci Biobehav Rev 30:961–982

    Article  PubMed  Google Scholar 

  • MacNeil D, Eliasmith C (2011) Fine-tuning and the stability of recurrent neural networks. PLoS ONE 6(9):e22885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mah YH, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137:2522–2531

    Article  PubMed Central  PubMed  Google Scholar 

  • Marotta JJ, McKeeff TJ, Behrmann M (2003) Hemispatial neglect: its effects on visual perception and visually guided grasping. Neuropsychologia 41:1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Mattingley JB, Bradshaw JL, Nettleton NC, Bradshaw JA (1994) Can task specific perceptual bias be distinguished from unilateral neglect? Neuropsychologia 32:805–817

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RD, Rossetti Y, Milner AD (2002) Prism adaptation improves chronic visual and haptic neglect: a single case study. Cortex 38:309–320

    Article  PubMed  Google Scholar 

  • Milner AD, Harvey M (1995) Distortion of size perception in visuospatial neglect. Curr Biol 5:85–89

    Article  CAS  PubMed  Google Scholar 

  • Milner AD, Harvey M, Roberts RC, Forster SV (1993) Line bisection errors in visual neglect: Misguided action or size distortion? Neuropsychologia 31:39–49

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Molenberghs P, Sale MV, Mattingley JB (2012) Is there a critical lesion site for unilateral spatial neglect? A meta-analysis using activation likelihood estimation. Front Hum Neurosci 10(6):78. doi:10.3389/fnhum.2012.00078

    Google Scholar 

  • Monaghan P, Shillcock R (1998) The cross-over effect in unilateral neglect. Modelling detailed data in the line-bisection task. Brain 121:907–921

    Article  PubMed  Google Scholar 

  • Morris AP, Kritikos A, Berberovic N, Pisella L, Chambers CD, Mattingley JB (2004) Prism adaptation and spatial attention: a study of visual search in normals and patients with unilateral neglect. Cortex 40:703–721

    Article  PubMed  Google Scholar 

  • Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Husain M (2003) The anatomy of visual neglect. Brain 126:1986–1997

    Article  PubMed  Google Scholar 

  • Mozer MC, Halligan PW, Marshall JC (1997) The end of the line for a brain-damaged model of unilateral neglect. J Cogn Neurosci 9:171–190

    Article  CAS  PubMed  Google Scholar 

  • Newport R, Schenk T (2012) Prisms and neglect: what have we learned? Neuropsychologia 50:1080–1091

    Article  PubMed  Google Scholar 

  • Nielsen K (1999) Spatial representation in the normal visual field: a study of hemifield line bisection. Neuropsychologia 37:267–277

    Article  CAS  PubMed  Google Scholar 

  • Nijboer TC, McIntosh RD, Nys GM, Dijkerman HC, Milner AD (2008) Prism adaptation improves voluntary but not automatic orienting in neglect. Neuroreport 19:293–298

    Article  PubMed  Google Scholar 

  • Nys GM, de Haan EH, Kunneman A, de Kort PL, Dijkerman HC (2008) Acute neglect rehabilitation using repetitive prism adaptation: a randomized placebo-controlled trial. Restor Neurol Neurosci 26:1–12

    CAS  PubMed  Google Scholar 

  • Pisella L, Rode G, Farnè A, Tilikete C, Rossetti Y (2006) Prism adaptation in the rehabilitation of patients with visuo-spatial cognitive disorders. Curr Opin Neurol 19:534–542

    Article  PubMed  Google Scholar 

  • Pouget A, Driver J (2000) Relating unilateral neglect to the neural coding of space. Curr Opin Neurobiol 10:242–249

    Article  CAS  PubMed  Google Scholar 

  • Pouget A, Sejnowski T (2001) Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. Psychol Rev 108:653–673

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Wallace B (2002) Strategic calibration and spatial alignment: a model from prism adaptation. J Mot Behav 34:126–138

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (2006) Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 44:1–20

    Article  PubMed  Google Scholar 

  • Rengachary J, d’Avossa G, Sapir A, Shulman GL, Corbetta M (2009) Is the Posner reaction time test more accurate than clinical tests in detecting left neglect in acute and chronic stroke? Arch Phys Med Rehabil 90:2081–2088

    Article  PubMed Central  PubMed  Google Scholar 

  • Rode G, Rossetti Y, Boisson D (2001) Prism adaptation improves representational neglect. Neuropsychologia 39:1250–1254

    Article  CAS  PubMed  Google Scholar 

  • Rode G, Klos T, Courtois-Jacquin S, Rossetti Y, Pisella L (2006) Neglect and prism adaptation: a new therapeutic tool for spatial cognition disorders. Restor Neurol Neurosci 24:347–356

    PubMed  Google Scholar 

  • Rossetti Y, Rode G, Pisella L, Farné A, Li L, Boisson D, Perenin MT (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169

    Article  CAS  PubMed  Google Scholar 

  • Rossit S, Malhotra P, Muir K, Reeves I, Duncan G, Livingstone K, Jackson H, Hogg C, Castle P, Learmonth G, Harvey M (2009) No neglect-specific deficits in reaching tasks. Cereb Cortex 19:2616–2624

    Article  PubMed  Google Scholar 

  • Rossit S, McAdam T, McLean DA, Goodale MA, Culham JC (2013) fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex 49:2525–2541

    Article  PubMed  Google Scholar 

  • Saj A, Cojan Y, Vocat R, Luauté J, Vuilleumier P (2013) Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients. Cortex 49:107–119

    Article  PubMed  Google Scholar 

  • Sarri M, Kalra L, Greenwood R, Driver J (2006) Prism adaptation changes perceptual awareness for chimeric visual objects but not for chimeric faces in spatial neglect after right-hemisphere stroke. Neurocase 12:127–135

    Article  PubMed  Google Scholar 

  • Sarri M, Greenwood R, Kalra L, Driver J (2011) Prism adaptation does not change the rightward spatial preference bias found with ambiguous stimuli in unilateral neglect. Cortex 47:353–366

    Article  PubMed Central  PubMed  Google Scholar 

  • Schindler I, McIntosh RD, Cassidy TP, Birchall D, Benson V, Ietswaart M, Milner AD (2009) The disengage deficit in hemispatial neglect is restricted to between-object shifts and is abolished by prism adaptation. Exp Brain Res 192:499–510

    Article  CAS  PubMed  Google Scholar 

  • Shaqiri A, Anderson B, Danckert J (2013) Statistical learning as a possible tool for rehabilitation in spatial neglect. Front Hum Neurosci. doi: 10.3389/fnhum.2013.00224

  • Striemer C, Danckert J (2007) Prism adaptation reduces the disengage deficit in right brain damage patients. Neuroreport 18:99–103

    Article  PubMed  Google Scholar 

  • Striemer CL, Danckert J (2010a) Dissociating perceptual and motor effects of prism adaptation in neglect. Neuroreport 21:436–441

    Article  PubMed  Google Scholar 

  • Striemer CL, Danckert J (2010b) Through a prism darkly: re-evaluating prisms and neglect. Trends Cogn Sci 14:1–9

    Article  Google Scholar 

  • Striemer C, Danckert J (2013) The influence of prism adaptation on perceptual and motor components of neglect: a reply to Saevarsson and Kristjansson. Front Hum Neurosci. doi: 10.3389/fnhum.2013.00044

  • Striemer C, Ferber S, Danckert J (2013) Can spatial working memory training rehabilitate neglect? Front Hum Neurosci. doi:10.3389/fnhum.2013.00334

    Google Scholar 

  • Tilikete C, Rode G, Rossetti Y, Pichon J, Li L, Boisson D (2001) Prism adaptation to rightward optical deviation improves postural imbalance in left-hemiparetic patients. Curr Biol 11:524–528

    Article  CAS  PubMed  Google Scholar 

  • Turton AJ, O’Leary K, Gabb J, Woodward R, Gilchrist ID (2010) A single blinded randomised controlled pilot trial of prism adaptation for improving self-care in stroke patients with neglect. Neuropsychol Rehabil 20:180–196

    Article  PubMed  Google Scholar 

  • Vallar G, Perani D (1986) The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24:609–622

    Article  CAS  PubMed  Google Scholar 

  • Vallar G, Daini R, Antonucci G (2000) Processing of illusion of length in spatial hemineglect: a study of line bisection. Neuropsychologia 38:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Cockburn J, Halligan P (1987) Development of a behavioral test of visuospatial neglect. Arch Phys Med Rehabil 68:98–102

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Danckert.

Appendix: Neural engineering framework

Appendix: Neural engineering framework

The NEF was developed by Eliasmith and Anderson (2003) and specifies how complex networks of neurally plausible neurons can be constructed. In this model, we use a spiking leaky integrate and fire (LIF) neuron model for all neurons. The form of this model is:

$$a_{i} \left( x \right) = G_{i} \left[ {\alpha_{i} e_{i} x + J_{i}^{\text{bias}} } \right],$$
(12)

where G i is the spiking LIF nonlinearity governed by:

$$\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{{\tau^{\text{RC}} }}\left( {J\left( t \right)R_{\text{m}} - V\left( t \right)} \right),$$
(13)

such that the neuron spikes when the voltage V passes a threshold. In these equations, a i (x) is the activity of neuron i in response to the input, x is the state-space input to the neuron, \(\mathcal{T}^{\rm RC}\) is the membrane time constant, α is the input gain, e i is the encoding vector that relates neural activity to the state space, J bias is a background current, and R m is the membrane resistance. The LIF model is also governed by \(\mathcal{T}^{\rm ref}\), an absolute refractory period applied after each spike.

The α and J bias parameters jointly specify the range of inputs each neuron is sensitive to, as well as the maximum firing rate of the neuron. All neurons in this model were randomly selected to have maximum firing rates between 200 and 400 Hz, with an even distribution. These are high for cortical firing. However, lower maximum firing rate values can be used with the same performance, although the number of neurons must increase proportionally. This comes at high computational cost, hence significantly increasing simulation times. To avoid undue simulation time, we left the firing rates high. In addition, J bias values were randomly selected to give neurons with x intercepts evenly distributed over the range of represented values for a given population. The parameters \(\mathcal{T}^{\rm ref}\) and \(\mathcal{T}^{\rm RC}\) were set to the biologically plausible values of 0.001 and 0.02 ms, respectively.

Equations (12) and (13) determine how a state space, x, is encoded into neural spikes. The first principle of the NEF suggests that the information carried by such a spike train can be linearly decoded. That is,

$$\hat{x} = \sum \limits_{i = 1}^{N} a_{i} \left( x \right)d_{i}$$
(14)

where \(\hat{x}\) is the decoded estimate of the state space, N is the number of neurons in the population, a i (x) is the activity of neuron i given the input (defined by 13), x is the input to each neuron in the population, d i is the decoding weight of neuron i. The decoders are found by solving for the optimal least squares linear decoders. That is, minimizing

$$E = \int \nolimits \left[ {x - \hat{x}} \right]^{2} {\text{d}}x,$$
(15)

with respect to d i .

Principle 2 of the NEF suggests that a population decoding can be made to decode arbitrary functions by finding appropriate decoding weights. That is, we can substitute an arbitrary f(x) for \(\hat{x}\) in (15) and perform the same minimization to find decoders, d f(x) i , that can be used to estimate the function f(x).

Using these decoders, the NEF suggests a method for building many layer (and recurrent) networks. For instance, if we define the encoding of a second population, b, analogously to (12), we have

$$b_{j} \left( y \right) = G_{j} \left[ {\alpha_{j} e_{j} y + J_{j}^{\text{bias}} } \right].$$
(16)

If we wish to compute the simple transformation y = x from population a to population b, we can substitute \(y = x \approx \hat{x}\) from (14) into (16) to determine connection weights:

$$\begin{aligned} b_{j} \left( y \right) & = G_{j} \left[ {\alpha_{j}e_j \sum \limits_{i = 1}^{N} a_{i} \left( x \right)d_{i} + J_{j}^{\text{bias}} } \right] \\ b_{j} \left( y \right) & = G_{j} \left[ {\mathop \sum \limits_{i = 1}^{N} w_{ij} a_{i} \left( x \right) + J_{j}^{\text{bias}} } \right] \\ \end{aligned}$$

where w ij  = α j e j d i .

Using this method, neuronal populations can be made to compute a wide variety of functions. Those relevant for this model are described in the ‘Component Descriptions’ section of the ‘Methods’. Neuronal populations can then be chained together through synaptic connections to construct large, complex, neurally plausible networks. See Eliasmith and Anderson (2003) for a more rigorous derivation and further details of the NEF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leigh, S., Danckert, J. & Eliasmith, C. Modelling the differential effects of prisms on perception and action in neglect. Exp Brain Res 233, 751–766 (2015). https://doi.org/10.1007/s00221-014-4150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4150-3

Keywords

Navigation