Skip to main content
Log in

Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Vomiting and nausea can be elicited by a variety of stimuli, although there is considerable evidence that the same brainstem areas mediate these responses despite the triggering mechanism. A variety of experimental approaches showed that nucleus tractus solitarius, the dorsolateral reticular formation of the caudal medulla (lateral tegmental field), and the parabrachial nucleus play key roles in integrating signals that trigger nausea and vomiting. These brainstem areas presumably coordinate the contractions of the diaphragm and abdominal muscles that result in vomiting. However, it is unclear whether these regions also mediate the autonomic responses that precede and accompany vomiting, including alterations in gastrointestinal activity, sweating, and changes in blood flow to the skin. Recent studies showed that delivery of an emetic compound to the gastrointestinal system affects the processing of vestibular inputs in the lateral tegmental field and parabrachial nucleus, potentially altering susceptibility for vestibular-elicited vomiting. Findings from these studies suggested that multiple emetic inputs converge on the same brainstem neurons, such that delivery of one emetic stimulus affects the processing of another emetic signal. Despite the advances in understanding the neurobiology of nausea and vomiting, much is left to be learned. Additional neurophysiologic studies, particularly those conducted in conscious animals, will be crucial to discern the integrative processes in the brain stem that result in emesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleksandrov VG, Bagaev VA, Nozdrachev AD (1998) Gastric related neurons in the rat medial vestibular nucleus. Neurosci Lett 250:66–68

    CAS  PubMed  Google Scholar 

  • Andrezik JA, Dormer KJ, Foreman RD, Person RJ (1984) Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neurosci 11:497–507

    CAS  Google Scholar 

  • Ariumi H, Saito R, Nago S, Hyakusoku M, Takano Y, Kamiya H (2000) The role of tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neurosci Lett 286:123–126

    CAS  PubMed  Google Scholar 

  • Arshian MS, Puterbaugh SR, Miller DJ, Catanzaro MF, Hobson CE, McCall AA, Yates BJ (2013) Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 228:353–363

    PubMed Central  PubMed  Google Scholar 

  • Baker J, Goldberg J, Hermann G, Peterson B (1984) Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143

    CAS  PubMed  Google Scholar 

  • Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108:367–381

    CAS  PubMed  Google Scholar 

  • Balaban CD (1999) Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Curr Opin Neurol 12:29–33

    CAS  PubMed  Google Scholar 

  • Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212

    CAS  PubMed  Google Scholar 

  • Balaban CD, McGee DM, Zhou J, Scudder CA (2002) Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation. J Neurophysiol 88:3175–3193

    PubMed  Google Scholar 

  • Balaban CD, Ogburn SW, Warshafsky SG, Ahmed A, Yates BJ (2014) Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation. PLoS ONE 9:e86730

    PubMed Central  PubMed  Google Scholar 

  • Ballesteros MA, Gallo M (2000) Bilateral tetrodotoxin blockade of the rat vestibular nuclei substitutes the natural unconditioned stimulus in taste aversion learning. Neurosci Lett 279:161–164

    CAS  PubMed  Google Scholar 

  • Bard P, Woolsey CN, Snider RS, Mountcastle VB, Bromiley RB (1947) Delimitation of central nervous mechanisms involved in motion sickness. Fed Proc 6:72

    CAS  PubMed  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    PubMed  Google Scholar 

  • Berkley KJ, Scofield SL (1990) Relays from the spinal cord and solitary nucleus through the parabrachial nucleus to the forebrain in the cat. Brain Res 529:333–338

    CAS  PubMed  Google Scholar 

  • Berman AI (1968) The brain stem of the cat. University of Wisconsin Press, Madison

    Google Scholar 

  • Bianchi AL, Grelot L (1989) Converse motor output of inspiratory bulbospinal premotoneurones during vomiting. Neurosci Lett 104:298–302

    CAS  PubMed  Google Scholar 

  • Billig I, Foris JM, Card JP, Yates BJ (1999) Transneuronal tracing of neural pathways controlling an abdominal muscle, rectus abdominis, in the ferret. Brain Res 820:31–44

    CAS  PubMed  Google Scholar 

  • Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20:7446–7454

    CAS  PubMed  Google Scholar 

  • Billig I, Hartge K, Card JP, Yates BJ (2001a) Transneuronal tracing of neural pathways controlling abdominal musculature in the ferret. Brain Res 912:24–32

    CAS  PubMed  Google Scholar 

  • Billig I, Yates BJ, Rinaman L (2001b) Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 281:R1243–R1255

    CAS  PubMed  Google Scholar 

  • Billig I, Card JP, Yates BJ (2003) Neurochemical phenotypes of MRF neurons influencing diaphragm and rectus abdominis activity. J Appl Physiol 94:391–398

    CAS  PubMed  Google Scholar 

  • Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47:481–487

    CAS  PubMed  Google Scholar 

  • Bles W, Bos JE, Kruit H (2000) Motion sickness. Curr Opin Neurol 13:19–25

    CAS  PubMed  Google Scholar 

  • Boissonade FM, Davison JS (1996) Effect of vagal and splanchnic nerve section on fos expression in ferret brain stem after emetic stimuli. Am J Physiol Regul Integr Comp Physiol 40:R228–R236

    Google Scholar 

  • Boissonade FM, Sharkey KA, Davison JS (1994) Fos expression in ferret dorsal vagal complex after peripheral emetic stimuli. Am J Physiol 266:R1118–R1126

    CAS  PubMed  Google Scholar 

  • Borison HL (1959) Effect of ablation of medullary emetic chemoreceptor trigger zone on vomiting responses to cerebral intraventricular injection of adrenaline, apomorphine and pilocarpine in the cat. J Physiol 147:172–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borison HL, Borison R (1986) Motion sickness reflex arc bypasses the area postrema in cats. Exp Neurol 92:723–737

    CAS  PubMed  Google Scholar 

  • Borison HL, Wang SC (1949) Functional localization of central coordinating mechanism for emesis in cat. J Neurophysiol 12:305–313

    CAS  PubMed  Google Scholar 

  • Borison HL, Hawken MJ, Hubbard JI, Sirett NE (1975) Unit activity from cat area postrema influenced by drugs. Brain Res 92:153–156

    CAS  PubMed  Google Scholar 

  • Bountra C, Bunce K, Dale T, Gardner C, Jordan C, Twissell D, Ward P (1993) Anti-emetic profile of a non-peptide neurokinin NK1 receptor antagonist, CP-99,994, in ferrets. Eur J Pharmacol 249:R3–R4

    CAS  PubMed  Google Scholar 

  • Brizzee K (1990) The central nervous system connections involved in motion induced emesis. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 9–27

    Google Scholar 

  • Cai YL, Ma WL, Li M, Guo JS, Li YQ, Wang LG, Wang WZ (2007) Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats. Neurosci Lett 417:132–137

    CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    CAS  PubMed  Google Scholar 

  • Catanzaro MF, Miller DJ, Cotter LA, McCall AA (2014) Integration of gastrointestinal and vestibular inputs by neurons in the cerebellar rostral fastigial nucleus. Exp Brain Res. doi:10.1007/s00221-014-3898-9

  • Cechetto DF, Calaresu FR (1983) Parabrachial units responding to stimulation of buffer nerves and forebrain in the cat. Am J Physiol 245:R811–R819

    CAS  PubMed  Google Scholar 

  • Cechetto DF, Calaresu FR (1985) Central pathways relaying cardiovascular afferent information to amygdala. Am J Physiol 248:R38–R45

    CAS  PubMed  Google Scholar 

  • Cechetto DF, Ciriello J, Calaresu FR (1983) Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J Auton Nerv Syst 8:97–110

    CAS  PubMed  Google Scholar 

  • Cheung BS, Howard IP, Money KE (1991) Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62:527–531

    CAS  PubMed  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376

    PubMed  Google Scholar 

  • Cohen B, Dai M, Yakushin SB, Raphan T (2008) Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Prog Brain Res 171:543–553

    PubMed  Google Scholar 

  • De Jonghe BC, Horn CC (2009) Chemotherapy agent cisplatin induces 48 h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 296:R902–R911

    PubMed Central  PubMed  Google Scholar 

  • Denise P, Darlot C (1993) The cerebellum as a predictor of neural messages—II. Role in motor control and motion sickness. Neurosci 56:647–655

    CAS  Google Scholar 

  • DeStefino VJ, Reighard DA, Sugiyama Y et al (2011) Responses of neurons in the rostral ventrolateral medulla to whole body rotations: comparisons in decerebrate and conscious cats. J Appl Physiol 110:1699–1707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebenholtz SM, Cohen MM, Linder BJ (1994) The possible role of nystagmus in motion sickness: a hypothesis. Aviat Space Environ Med 65:1032–1035

    CAS  PubMed  Google Scholar 

  • Eyeson-Annan M, Peterken C, Brown B, Atchison D (1996) Visual and vestibular components of motion sickness. Aviat Space Environ Med 67:955–962

    CAS  PubMed  Google Scholar 

  • Fox RA, Corcoran M, Brizzee KR (1990) Conditioned taste aversion and motion sickness in cats and squirrel monkeys. Can J Physiol Pharmacol 68:269–278

    CAS  PubMed  Google Scholar 

  • Fukuda H, Koga T (1991) The Botzinger complex as the pattern generator for retching and vomiting in the dog. Neurosci Res 12:471–485

    CAS  PubMed  Google Scholar 

  • Fukuda H, Koga T (1992) Non-respiratory neurons in the Botzinger complex exhibiting appropriate firing patterns to generate the emetic act in dogs. Neurosci Res 14:180–194

    CAS  PubMed  Google Scholar 

  • Fukuda H, Koga T (1997) Most inspiratory neurons in the pre-Botzinger complex are suppressed during vomiting in dogs. Brain Res 763:30–38

    CAS  PubMed  Google Scholar 

  • Fukuda H, Koga T, Furukawa N, Nakamura E, Shiroshita Y (1998) The tachykinin NK1 receptor antagonist GR205171 prevents vagal stimulation-induced retching but not neuronal transmission from emetic vagal afferents to solitary nucleus neurons in dogs. Brain Res 802:221–231

    CAS  PubMed  Google Scholar 

  • Fukuda H, Koga T, Furukawa N, Nakamura E, Shiroshita Y (1999) The tachykinin NK1 receptor antagonist GR205171 abolishes the retching activity of neurons comprising the central pattern generator for vomiting in dogs. Neurosci Res 33:25–32

    CAS  PubMed  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Google Scholar 

  • Gallo M, Marquez SL, Ballesteros MA, Maldonado A (1999) Functional blockade of the parabrachial area by tetrodotoxin disrupts the acquisition of conditioned taste aversion induced by motion-sickness in rats. Neurosci Lett 265:57–60

    CAS  PubMed  Google Scholar 

  • Gardner C, Perren M (1998) Inhibition of anaesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacol 37:1643–1644

    CAS  Google Scholar 

  • Gardner CJ, Armour DR, Beattie DT et al (1996) GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 65:45–53

    CAS  PubMed  Google Scholar 

  • Gieroba ZJ, Blessing WW (1994) Fos-containing neurons in medulla and pons after unilateral stimulation of the afferent abdominal vagus in conscious rabbits. Neurosci 59:851–858

    CAS  Google Scholar 

  • Golding JF (2006) Motion sickness susceptibility. Auton Neurosci 129:67–76

    PubMed  Google Scholar 

  • Golding JF, Gresty MA (2005) Motion sickness. Curr Opin Neurol 18:29–34

    PubMed  Google Scholar 

  • Golding JF, Bles W, Bos JE, Haynes T, Gresty MA (2003) Motion sickness and tilts of the inertial force environment: active suspension systems vs. active passengers. Aviat Space Environ Med 74:220–227

    CAS  PubMed  Google Scholar 

  • Gonsalves S, Watson J, Ashton C (1996) Broad spectrum antiemetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 305:181–185

    CAS  PubMed  Google Scholar 

  • Grabus SD, Glowa JR, Riley AL (2004) Morphine- and cocaine-induced c-Fos levels in Lewis and Fischer rat strains. Brain Res 998:20–28

    CAS  PubMed  Google Scholar 

  • Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47:873–882

    CAS  PubMed  Google Scholar 

  • Grelot L, Miller A (1994) Vomiting—its ins and outs. News Physiol Sci 9:142–147

    Google Scholar 

  • Halsell CB, Travers SP, Travers JB (1996) Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neurosci 72:185–197

    CAS  Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    CAS  PubMed  Google Scholar 

  • Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107

    CAS  PubMed  Google Scholar 

  • Horn CC, Richardson EJ, Andrews PL, Friedman MI (2004) Differential effects on gastrointestinal and hepatic vagal afferent fibers in the rat by the anti-cancer agent cisplatin. Auton Neurosci 115:74–81

    CAS  PubMed  Google Scholar 

  • Horn CC, Ciucci M, Chaudhury A (2007) Brain Fos expression during 48 h after cisplatin treatment: neural pathways for acute and delayed visceral sickness. Auton Neurosci 132:44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito H, Nishibayashi M, Kawabata K, Maeda S, Seki M, Ebukuro S (2003) Induction of Fos protein in neurons in the medulla oblongata after motion- and X-irradiation-induced emesis in musk shrews (Suncus murinus). Auton Neurosci 107:1–8

    CAS  PubMed  Google Scholar 

  • Ito H, Nishibayashi M, Maeda S, Seki M, Ebukuro S (2005) Emetic responses and neural activity in young musk shrews during the breast-feeding/weaning period: comparison between the high and low emetic response strains using a shaking stimulus. Exp Anim 54:301–307

    CAS  PubMed  Google Scholar 

  • Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9:83–87

    CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Meth 103:63–71

    CAS  Google Scholar 

  • Kennedy R, Drexler J, Kennedy R (2010) Research in visually induced motion sickness. Appl Ergonomics 41:494–503

    Google Scholar 

  • King GW (1980) Topology of ascending brainstem projections to nucleus parabrachialis in the cat. J Comp Neurol 191:615–638

    CAS  PubMed  Google Scholar 

  • King GW, Knox CK (1982) An electrophysiological study of medullary neurons projecting to nucleus parabrachialis of the cat. Brain Res 236:27–33

    CAS  PubMed  Google Scholar 

  • Knox GW (2014) Motion sickness: an evolutionary and genetic basis for the negative reinforcement model. Aviat Space Environ Med 85:46–49

    PubMed  Google Scholar 

  • Knox AP, Strominger NL, Battles AH, Carpenter DO (1994) The central connections of the vagus nerve in the ferret. Brain Res Bull 33:49–63

    CAS  PubMed  Google Scholar 

  • Kobashi M, Adachi A (1986) Projection of nucleus tractus solitarius units influenced by hepatoportal afferent signal to parabrachial nucleus. J Auton Nerv Syst 16:153–158

    CAS  PubMed  Google Scholar 

  • Koga T, Qu R, Fukuda H (1998) The central pattern generator for vomiting may exist in the reticular area dorsomedial to the retrofacial nucleus in dogs. Exp Brain Res 118:139–147

    CAS  PubMed  Google Scholar 

  • Lackner JR, Dizio P (2006) Space motion sickness. Exp Brain Res 175:377–399

    PubMed  Google Scholar 

  • Lang IM, Sarna SK, Shaker R (1999) Gastrointestinal motor and myoelectric correlates of motion sickness. Am J Physiol 277:G642–G652

    CAS  PubMed  Google Scholar 

  • Leslie RA, Gwyn DG (1984) Neuronal connections of the area postrema. Fed Proc 43:2941–2943

    CAS  PubMed  Google Scholar 

  • Lois JH, Rice CD, Yates BJ (2009) Neural circuits controlling diaphragm function in the cat revealed by transneuronal tracing. J Appl Physiol 106:138–152

    PubMed Central  PubMed  Google Scholar 

  • McCall AA, Moy JD, DeMayo WM, Puterbaugh SR, Miller DJ, Catanzaro MF, Yates BJ (2013) Processing of vestibular inputs by the medullary lateral tegmental field of conscious cats: implications for generation of motion sickness. Exp Brain Res 225:349–359

    PubMed Central  PubMed  Google Scholar 

  • McCarthy LE, Borison HL (1974) Respiratory mechanics of vomiting in decerebrate cats. Am J Physiol 226:738–743

    CAS  PubMed  Google Scholar 

  • Miller AD, Ezure K (1992) Behavior of inhibitory and excitatory propriobulbar respiratory neurons during fictive vomiting. Brain Res 578:168–176

    CAS  PubMed  Google Scholar 

  • Miller AD, Grélot L (1996) The neural basis of nausea and vomiting. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton, pp 85–94

    Google Scholar 

  • Miller AD, Leslie RA (1994) The area postrema and vomiting. Front Neuroendocrinol 15:301–320

    CAS  PubMed  Google Scholar 

  • Miller AD, Ruggiero DA (1994) Emetic reflex are revealed by expression of the Immediate-Early gene C-Fos in the cat. J Neurosci 14:871–888

    CAS  PubMed  Google Scholar 

  • Miller AD, Wilson VJ (1983) Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 23:26–31

    CAS  PubMed  Google Scholar 

  • Miller AD, Tan LK, Suzuki I (1987) Control of abdominal and expiratory intercostal muscle activity during vomiting: role of ventral respiratory group expiratory neurons. J Neurophysiol 57:1854–1866

    CAS  PubMed  Google Scholar 

  • Miller AD, Nonaka S, Lakos SF, Tan LK (1990) Diaphragmatic and external intercostal muscle control during vomiting: behavior of inspiratory bulbospinal neurons. J Neurophysiol 63:31–36

    CAS  PubMed  Google Scholar 

  • Miller AD, Nonaka S, Jakus J (1994) Brain areas essential or non-essential for emesis. Brain Res 647:255–264

    CAS  PubMed  Google Scholar 

  • Miller AD, Nonaka S, Jakus J, Yates BJ (1996) Modulation of vomiting by the medullary midline. Brain Res 737:51–58

    CAS  PubMed  Google Scholar 

  • Miller DM, Cotter LA, Gandhi NJ et al (2008a) Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res 188:175–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller DM, Cotter LA, Gandhi NJ et al (2008b) Responses of rostral fastigial nucleus neurons of conscious cats to rotations in vertical planes. Neurosci 155:317–325

    CAS  Google Scholar 

  • Money KE (1970) Motion sickness. Physiol Rev 50:1–39

    CAS  PubMed  Google Scholar 

  • Money KE, Cheung BS (1983) Another function of the inner ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54:208–211

    CAS  PubMed  Google Scholar 

  • Money KE, Lackner JR, Cheung RSK (1996) The autonomic nervous system and motion sickness. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton, pp 147–173

    Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    CAS  PubMed  Google Scholar 

  • Moy JD, Miller DJ, Catanzaro MF et al (2012) Responses of neurons in the caudal medullary lateral tegmental field to visceral inputs and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 303:R929–R940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okahara K, Nisimaru N (1991) Climbing fiber responses evoked in lobule VII of the posterior cerebellum from a vagal nerve in rabbits. Neurosci Res 12:232–239

    CAS  PubMed  Google Scholar 

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68:294–303

    CAS  PubMed  Google Scholar 

  • Onishi T, Mori T, Yanagihara M, Furukawa N, Fukuda H (2007) Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs. Auton Neurosci 136:20–30

    PubMed  Google Scholar 

  • Paton JF, La Noce A, Sykes RM, Sebastiani L, Bagnoli P, Ghelarducci B, Bradley DJ (1991) Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit–some functional considerations. J Auton Nerv Syst 36:209–224

    CAS  PubMed  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 7:63–76

    CAS  PubMed  Google Scholar 

  • Portillo F, Grelot L, Milano S, Bianchi AL (1994) Brainstem neurons with projecting axons to both phrenic and abdominal motor nuclei: a double fluorescent labeling study in the cat. Neurosci Lett 173:50–54

    CAS  PubMed  Google Scholar 

  • Pyykko I, Schalen L, Jantti V, Magnusson M (1984) A reduction of vestibulo-visual integration during transdermally administered scopolamine and dimenhydrinate. A presentation of gain control theory in motion sickness. Acta Otolaryngol Suppl 406:167–173

    CAS  PubMed  Google Scholar 

  • Reason J (1978) Motion sickness: some theoretical and practical considerations. Appl Ergon 9:163–167

    CAS  PubMed  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press, London

    Google Scholar 

  • Reilly S (1999) The parabrachial nucleus and conditioned taste aversion. Brain Res Bull 48:239–254

    CAS  PubMed  Google Scholar 

  • Reynolds DJ, Barber NA, Grahame-Smith DG, Leslie RA (1991) Cisplatin-evoked induction of c-fos protein in the brainstem of the ferret: the effect of cervical vagotomy and the anti-emetic 5-HT3 receptor antagonist granisetron (BRL 43694). Brain Res 565:231–236

    CAS  PubMed  Google Scholar 

  • Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3:195–240

    Google Scholar 

  • Rinaman L, Schwartz G (2004) Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J Neurosci 24:2782–2786

    CAS  PubMed  Google Scholar 

  • Rolnick A, Lubow RE (1991) Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 34:867–879

    CAS  PubMed  Google Scholar 

  • Ruggiero D, Batton RR 3rd, Jayaraman A, Carpenter MB (1977) Brain stem afferents to the fastigial nucleus in the cat demonstrated by transport of horseradish peroxidase. J Comp Neurol 172:189–209

    CAS  PubMed  Google Scholar 

  • Saab CY, Willis WD (2001) Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res 140:122–126

    CAS  PubMed  Google Scholar 

  • Sakai N, Yamamoto T (1997) Conditioned taste aversion and c-fos expression in the rat brainstem after administration of various USs. NeuroReport 8:2215–2220

    CAS  PubMed  Google Scholar 

  • Sakai N, Yamamoto T (1998) Role of the medial and lateral parabrachial nucleus in acquisition and retention of conditioned taste aversion in rats. Behav Brain Res 93:63–70

    CAS  PubMed  Google Scholar 

  • Saleh TM, Cechetto DF (1994) Neurotransmitters in the parabrachial nucleus mediating visceral input to the thalamus in rats. Am J Physiol 266:R1287–R1296

    CAS  PubMed  Google Scholar 

  • Saleh TM, Cechetto DF (1995) Neurochemical interactions in the parabrachial nucleus mediating visceral inputs to visceral thalamic neurons. Am J Physiol 268:R786–R795

    CAS  PubMed  Google Scholar 

  • Saper CB (1982) Reciprocal parabrachial-cortical connections in the rat. Brain Res 242:33–40

    CAS  PubMed  Google Scholar 

  • Scalera G, Spector AC, Norgren R (1995) Excitotoxic lesions of the parabrachial nuclei prevent conditioned taste aversions and sodium appetite in rats. Behav Neurosci 109:997–1008

    CAS  PubMed  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann New York Acad Sci 656:190–204

    CAS  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    CAS  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    CAS  PubMed  Google Scholar 

  • Shupak A, Gordon CR (2006) Motion sickness: advances in pathogenesis, prediction, prevention, and treatment. Aviat Space Environ Med 77:1213–1223

    PubMed  Google Scholar 

  • Snyder DJ, Jahng JW, Smith JC, Houpt TA (2000) c-Fos induction in visceral and vestibular nuclei of the rat brain stem by a 9.4 T magnetic field. NeuroReport 11:2681–2685

    CAS  PubMed  Google Scholar 

  • Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    CAS  PubMed  Google Scholar 

  • Sugiyama Y, Suzuki T, DeStefino VJ, Yates BJ (2011) Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 301:R1380–R1390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Sugiyama Y, Yates BJ (2012) Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 302:R965–R975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi Y, McLean JH, Hopkins DA (1982) Reciprocal connections between the amygdala and parabrachial nuclei: ultrastructural demonstration by degeneration and axonal transport of horseradish peroxidase in the cat. Brain Res 239:583–588

    CAS  PubMed  Google Scholar 

  • Thornton WE, Bonato F (2013) Space motion sickness and motion sickness: symptoms and etiology. Aviat Space Environ Med 84:716–721

    PubMed  Google Scholar 

  • Tong G, Robertson LT, Brons J (1993) Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 601:65–75

    CAS  PubMed  Google Scholar 

  • Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–495

    CAS  PubMed  Google Scholar 

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    CAS  PubMed  Google Scholar 

  • Ugolini G (2008) Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol (Basel) 131:493–506

    CAS  Google Scholar 

  • Wang SC, Borison HL (1951) The vomiting center; its destruction by radon implantation in dog medulla oblongata. Am J Physiol 166:712–717

    CAS  PubMed  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs; importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623

    CAS  PubMed  Google Scholar 

  • Wang SC, Chinn HI, Renzi AA (1957) Experimental motion sickness in dogs: role of abdominal visceral afferents. Am J Physiol 190:578–580

    CAS  PubMed  Google Scholar 

  • Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PL (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. British J Pharmacol 115:84–94

    CAS  Google Scholar 

  • Welzl H, D’Adamo P, Lipp HP (2001) Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 125:205–213

    CAS  PubMed  Google Scholar 

  • Wilpizeski CR, Lowry LD, Goldman WS (1986) Motion-induced sickness following bilateral ablation of area postrema in squirrel monkeys. Laryngoscope 96:1221–1225

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Sawa K (2000) c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 866:135–143

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Shimura T, Sako N, Azuma S, Bai WZ, Wakisaka S (1992) C-fos expression in the rat brain after intraperitoneal injection of lithium chloride. NeuroReport 3:1049–1052

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Shimura T, Sako N, Yasoshima Y, Sakai N (1994) Neural substrates for conditioned taste aversion in the rat. Behav Brain Res 65:123–137

    CAS  PubMed  Google Scholar 

  • Yates BJ, Grelot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 267:R974–R983

    CAS  PubMed  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206

    CAS  PubMed  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47:395–406

    CAS  PubMed  Google Scholar 

  • Yates BJ, Smail JA, Stocker SD, Card JP (1999) Transneuronal tracing of neural pathways controlling activity of diaphragm motoneurons in the ferret. Neurosci 90:1501–1513

    CAS  Google Scholar 

  • Zheng ZH, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett 32:113–118

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by Grant R01-DC003732 from the National Institutes of Health (USA). Michael Catanzaro was supported by an American Physiological Society Undergraduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill J. Yates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yates, B.J., Catanzaro, M.F., Miller, D.J. et al. Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness. Exp Brain Res 232, 2455–2469 (2014). https://doi.org/10.1007/s00221-014-3937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3937-6

Keywords

Navigation