Skip to main content
Log in

Hand tapping at mixed frequencies requires more motor cortex activity compared to single frequencies: an fNIRS study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Fast cyclic movements and discrete motor acts are controlled differently, presumably because fast cyclic tasks are more automated, thereby depending on different circuits. If fast cyclic movements are made less predictable (e.g., by mixing frequencies), one would predict that their control will be less automated, requiring increased activity in motor cortical areas. The present functional near-infrared spectroscopy (fNIRS) study investigated whether switching between frequencies increases the motor cortex activity compared to movements at single rates. Therefore, hand tapping at mixed frequencies (“mixed”) was compared with hand tapping at 0.4 (“low frequency”), 0.8 (“mid-frequency”), and 1.4 Hz (“high frequency”). Oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentration changes were studied in eleven healthy subjects with eight-channel fNIRS covering the hand motor cortex. Repeated-measures ANOVAs revealed significant main effects for the type of task in HbO and HbR. Post hoc analysis showed a larger HbO increase and HbR decrease for the mixed task compared to the low- and high-frequency conditions. In addition, the mid-frequency condition revealed a smaller HbR decrease compared to the mixed task. Single frequency data indicated the existence of separate motor control systems for low- and high-frequency movements. The increased activity for the mixed task is suggested to be the result of the recruitment of a voluntary command motor system instead of automated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blinkenberg M, Bonde C, Holm S et al (1996) Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb Blood Flow Metab 16:794–803

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JJ, Park J-H, Ryu YU, Shea CH (2003) Discrete and cyclical units of action in a mixed target pair aiming task. Exp Brain Res 150:473–489. doi:10.1007/s00221-003-1471-z

    PubMed  Google Scholar 

  • Duncan A, Meek JH, Clemence M et al (1996) Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr Res 39:889–894

    Article  PubMed  CAS  Google Scholar 

  • Goble DJ, Coxon JP, Van IA et al (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31:1281–1295

    PubMed  Google Scholar 

  • Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol 66:376–382

    Article  PubMed  CAS  Google Scholar 

  • Jäncke L, Specht K, Mirzazade S et al (1998) A parametric analysis of the “rate effect” in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37–40

    Article  PubMed  Google Scholar 

  • Jäncke L, Lutz K, Koeneke S (2006) Converging evidence of ERD/ERS and BOLD responses in motor control research. Prog Brain Res 159:261–271. doi:10.1016/S0079-6123(06)59018-1

    Article  PubMed  Google Scholar 

  • Jenkins IH, Passingham RE, Brooks DJ (1997) The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci 151:195–205

    Article  PubMed  CAS  Google Scholar 

  • Kastrup A, Kruger G, Neumann-Haefelin T et al (2002) Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. NeuroImage 15:74–82

    Article  PubMed  Google Scholar 

  • Kawashima R, Inoue K, Sugiura M et al (1999) A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92:107–112

    Article  PubMed  CAS  Google Scholar 

  • Kay BA, Kelso JA, Saltzman EL, Schoner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol 13:178–192

    CAS  Google Scholar 

  • Khushu S, Kumaran SS, Tripathi RP et al (2001) Functional magnetic resonance imaging of the primary motor cortex in humans: response to increased functional demands. J Biosci 26:205–215

    Article  PubMed  CAS  Google Scholar 

  • Koeneke S, Lutz K, Herwig U et al (2006) Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res 174:199–209. doi:10.1007/s00221-006-0440-8

    Article  PubMed  CAS  Google Scholar 

  • Koenraadt KL, Duysens J, Smeenk M, Keijsers NL (2012) Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity. J Neural Eng 9:046010

    Article  PubMed  CAS  Google Scholar 

  • Levin O, Ouamer M, Steyvers M, Swinnen SP (2001) Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Exp Brain Res 141:471–484. doi:10.1007/s002210100874

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255. doi:10.1016/S0959-4388(03)00036-9

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Wing AM, Pope PA et al (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42:1301–1312. doi:10.1016/j.neuropsychologia.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Ivry R (2004) Moving to a different beat. Nat Neurosci 7:1025–1026. doi:10.1038/nn1004-1025

    Article  PubMed  CAS  Google Scholar 

  • Obrig H, Hirth C, Junge-Hulsing JG et al (1997) Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus. Adv Exp Med Biol 411:471–480

    Article  PubMed  CAS  Google Scholar 

  • Okada E, Firbank M, Schweiger M et al (1997) Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Kwon YH, Lee MY et al (2008) Brain activation pattern according to exercise complexity: a functional MRI study. NeuroRehabilitation 23:283–288

    PubMed  Google Scholar 

  • Rao SM, Bandettini PA, Binder JR et al (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254. doi:10.1097/00004647-199611000-00020

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Ibañez V, Deiber MP et al (1996) Frequency-dependent changes of regional cerebral blood flow during finger movements. J Cereb Blood Flow Metab 16:23–33. doi:10.1097/00004647-199601000-00003

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Ibanez V, Campbell G et al (1997) Frequency-dependent changes of regional cerebral blood flow during finger movements: functional MRI compared to PET. J Cereb Blood Flow Metab 17:670–679

    Article  PubMed  CAS  Google Scholar 

  • Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Schlaug G, Sanes JN, Thangaraj V et al (1996) Cerebral activation covaries with movement rate. NeuroReport 7:879–883

    Article  PubMed  CAS  Google Scholar 

  • Smits-Engelsman BCM, Van Galen GP, Duysens J (2002) The breakdown of Fitts’ law in rapid, reciprocal aiming movements. Exp Brain Res 145:222–230. doi:10.1007/s00221-002-1115-8

    Article  PubMed  CAS  Google Scholar 

  • Smits-Engelsman BC, Swinnen SP, Duysens J (2006) The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Neurosci Lett 396:28–32

    Article  PubMed  CAS  Google Scholar 

  • Sternad D, de Rugy A, Pataky T, Dean WJ (2002) Interaction of discrete and rhythmic movements over a wide range of periods. Exp Brain Res 147:162–174. doi:10.1007/s00221-002-1219-1

    Article  PubMed  Google Scholar 

  • Toma K, Mima T, Matsuoka T et al (2002) Movement rate effect on activation and functional coupling of motor cortical areas. J Neurophysiol 88:3377–3385

    Article  PubMed  Google Scholar 

  • Van Impe A, Coxon JP, Goble DJ et al (2009) Ipsilateral coordination at preferred rate: effects of age, body side and task complexity. NeuroImage 47:1854–1862. doi:10.1016/j.neuroimage.2009.06.027

    Article  PubMed  Google Scholar 

  • Wei K, Wertman G, Sternad D (2003) Interactions between rhythmic and discrete components in a bimanual task. Mot Control 7:134–154

    Google Scholar 

  • Wexler BE, Fulbright RK, Lacadie CM et al (1997) An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging 15:385–396

    Article  PubMed  CAS  Google Scholar 

  • Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. NeuroImage 42:343–356

    Article  PubMed  Google Scholar 

  • Yuan H, Perdoni C, He B (2010) Relationship between speed and EEG activity during imagined and executed hand movements. J Neural Eng 7:26001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the BrainGain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. J.D. was supported by F.W.O. (Grant G.0901.11).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Duysens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenraadt, K.L.M., Duysens, J., Meddeler, B.M. et al. Hand tapping at mixed frequencies requires more motor cortex activity compared to single frequencies: an fNIRS study. Exp Brain Res 231, 231–237 (2013). https://doi.org/10.1007/s00221-013-3686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3686-y

Keywords

Navigation