Skip to main content
Log in

Bias and sensitivity of proprioception of a passively felt hand path with and without a secondary task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 21 June 2013

Abstract

Previously, we observed changes in the scale, rotation, and location of drawn shapes when subjects simultaneously performed a secondary task, but not in the shape or proportion of the drawing. We suggested the secondary task impacted motor planning and execution or proprioception of the primary task. To isolate for proprioceptive effects, here we used the same secondary task during passive shape perception. A robotic manipulandum moved the subject’s hand around the perimeter of a template shape and then a test shape differing in size, proportion, or location. Subjects also performed the same primary task while simultaneously performing a secondary task of reporting the orientation of right or left tilted arrows. We compared the performance between single and dual task, and different workspaces. In single-task conditions, subjects perceived scale, location, and proportion very close to the actual (all biases under 1 cm). A secondary task only increased the uncertainty range for judgment of scale, with no other effect. Subjects judged shapes in the centered workspace to be smaller and closer relative to the template compared with those in the peripheral workspace, although in that workspace, it was more difficult to discern changes in the proportion of the shape. The result for scale in the current passive paradigm is not different from our active study in which efference copy was available. This suggests that the scale parameters of the shape, whether actively or passively encountered, are disrupted by task interference at the level of proprioception or sensory integration rather than motor planning and execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich SV, Berkinblit MB, Fookson O, Poizner H (1998) Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation. J Neurophysiol 79:2833–2846

    PubMed  CAS  Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13172–13177. doi:10.1073/pnas.162485599

    Article  PubMed  CAS  Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003) Neural activity in prefrontal cortex during copying geometrical shapes. I. single cells encode shape, sequence, and metric parameters. Exp Brain Res 150:127–141. doi:10.1007/s00221-003-1416-6

    PubMed  Google Scholar 

  • Bodegard A, Geyer S, Herath P, Grefkes C, Zilles K, Roland PE (2003) Somatosensory areas engaged during discrimination of steady pressure, spring strength, and kinesthesia. Hum Brain Mapp 20:103–115. doi:10.1002/hbm.10125

    Article  PubMed  Google Scholar 

  • Bullock D (2004) From parallel sequence representations to calligraphic control: a conspiracy of neural circuits. Mot Control 8:371–391

    Google Scholar 

  • Carey DP, Hargreaves EL, Goodale MA (1996) Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. Exp Brain Res 112:496–504

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Goodman D, Elliott D (1992) Asymmetries in the discrete and pseudocontinuous regulation of visually guided reaching. Brain Cogn 18:169–191

    Article  PubMed  CAS  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with 2 ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402

    PubMed  CAS  Google Scholar 

  • Craddock M, Martinovic J, Lawson R (2011) An advantage for active versus passive aperture-viewing in visual object recognition. Perception 40:1154–1163

    Article  PubMed  Google Scholar 

  • Farrer C, Franck N, Paillard J, Jeannerod M (2003) The role of proprioception in action recognition. Conscious Cogn 12:609

    Article  PubMed  CAS  Google Scholar 

  • Fiehler K, Burke M, Engel A, Bien S, Rosler F (2008) Kinesthetic working memory and action control within the dorsal stream. Cereb Cortex 18:243–253. doi:10.1093/cercor/bhm071

    Article  PubMed  Google Scholar 

  • Henriques DY, Flanders M, Soechting JF (2004) Haptic synthesis of shapes and sequences. J Neurophysiol 91:1808–1821. doi:10.1152/jn.00998.2003

    Article  PubMed  Google Scholar 

  • Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC (2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126

    Article  PubMed  CAS  Google Scholar 

  • Jones SA, Cressman EK, Henriques DY (2010) Proprioceptive localization of the left and right hands. Exp Brain Res 204:373–383. doi:10.1007/s00221-009-2079-8

    Article  PubMed  Google Scholar 

  • Kesten H (1958) Accelerated stochastic approximation. Ann Math Stat 29:41–59

    Article  Google Scholar 

  • Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509. doi:10.1126/science.1061133

    Article  PubMed  CAS  Google Scholar 

  • Lashley KS (1951) The Problem of Serial Order in Behavior. In: Jeffress LA, California Institute of Technology, Pasadena. Hixon Fund (eds) Cerebral mechanisms in behavior; the Hixon symposium. Hafner, 1967, New York, pp 122–135

  • Laufer Y, Hocherman S, Dickstein R (2001) Accuracy of reproducing hand position when using active compared with passive movement. Physiother Res Int 6:65–75

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5:552–563

    Article  PubMed  CAS  Google Scholar 

  • Martin BC, Henriques DY (2010) The effects of secondary task interference on shape reproduction. Exp Brain Res 202:65–77. doi:10.1007/s00221-009-2112-y

    Article  PubMed  Google Scholar 

  • Miquée A, Xerri C, Rainville C, Anton JL, Nazarian B, Roth M, Zennou-Azogui Y (2008) Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study. Neuroscience 152:29–39. doi:10.1016/j.neuroscience.2007.12.021

    Article  PubMed  Google Scholar 

  • Oliver RT, Geiger EJ, Lewandowski BC, Thompson-Schill SL (2009) Remembrance of things touched: how sensorimotor experience affects the neural instantiation of object form. Neuropsychologia 47:239–247. doi:10.1016/j.neuropsychologia.2008.07.027

    Article  PubMed  Google Scholar 

  • Otte E, van Mier HI (2006) Bimanual interference in children performing a dual motor task. Hum Mov Sci 25:678–693. doi:10.1016/j.humov.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  • Paillard J, Brouchon M (1968) Active and passive movements in the calibration of position sense. In: Freedman SJ (ed) The neuropsychology of spatially oriented behavior. Dorsey Press, Homewood, Ill, pp 37–55

    Google Scholar 

  • Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Sathian K (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45:476–483. doi:10.1016/j.neuropsychologia.2006.03.003

    Article  PubMed  Google Scholar 

  • Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–174

    Article  PubMed  CAS  Google Scholar 

  • Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA (2005) Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J Neurosci 25:4294–4306. doi:10.1523/JNEUROSCI.0377-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EL, Desimone R, Albright TD, Gross CG (1983) Shape recognition and inferior temporal neurons. Proc Natl Acad Sci U S A 80:5776–5778

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532–546. doi:10.1038/nrn1427

    Article  PubMed  CAS  Google Scholar 

  • Soto-Faraco S, Ronald A, Spence C (2004) Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception. Percept Psychophys 66:1077

    Article  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915. doi:10.1038/nn1309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake C. W. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, B.C.W., Deeghan, K. & Henriques, D.Y.P. Bias and sensitivity of proprioception of a passively felt hand path with and without a secondary task. Exp Brain Res 228, 385–396 (2013). https://doi.org/10.1007/s00221-013-3572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3572-7

Keywords

Navigation