Skip to main content
Log in

Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The applicability of corticomuscular coherence (CMC) as a connectivity measure is limited since only 40–50 % of the healthy population presents significant CMC. In this study, we applied continuous joint position perturbations to obtain a more reliable measure of connectivity in motor control. We evaluated the coherence between joint position perturbations and EEG (position-cortical coherence, PCC) and CMC. Healthy subjects performed two isotonic force tasks against the handle of a wrist manipulator. The baseline task was isometric; in the perturbed task, the handle moved continuously with small amplitude. The position perturbation signal covered frequencies between 5 and 29 Hz. In the perturbed task, all subjects had significant PCC and 86 % of the subjects had significant CMC, on both stimulus and non-stimulus frequencies. In the baseline task, CMC was present in only 45 % of the subjects, mostly on beta-band frequencies. The position perturbations during an isotonic force task elicited PCC in all subjects and elicited CMC in most subjects on both stimulus and non-stimulus frequencies. Perturbed CMC possibly arises by two separate processes: an intrinsic process, similar to the process in an unperturbed task, involving both efferent and afferent pathways; and a process related to the excitation of the afferent and efferent pathways by the perturbation. These processes cannot be separated. PCC, however, reflects connectivity via the afferent pathways only. As PCC was present in all healthy subjects, we propose this coherence as a reliable measure for connectivity in motor control via the afferent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbruzzese G, Berardelli A, Rothwell JC, Day BL, Marsden CD (1985) Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Exp Brain Res 58(3):544–551

    Article  PubMed  CAS  Google Scholar 

  • Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lücking CH, Hellwig B (2009) High functional connectivity of tremor related subthalamic neurons in Parkinson’s disease. Clin Neurophysiol 120(9):1755–1761

    Article  PubMed  Google Scholar 

  • Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17(6):649–655

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(Pt 1):225–241

    Article  PubMed  CAS  Google Scholar 

  • Boonstra TW, Breakspear M (2012) Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol 107(3):796–807

    Article  PubMed  Google Scholar 

  • Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87(5):1100–1117

    Article  Google Scholar 

  • Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff C (2007) Crossed cortico-spinal motor control after capsular stroke. Eur J Neurosci 25(9):2935–2945

    Article  PubMed  Google Scholar 

  • Bruns A (2004) Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137(2):321–332

    Article  PubMed  Google Scholar 

  • Campfens SF, Schouten AC, van der Kooij H, van Putten MJAM (2011) P7.11 Corticomuscular system tunes to external perturbations during a motor task as revealed by corticomuscular coherence. Clin Neurophysiol 122(Suppl 1):S92

    Google Scholar 

  • Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:1235–1246

    Article  Google Scholar 

  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924

    PubMed  CAS  Google Scholar 

  • Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, Sahgal V, Yue GH (2009) Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol 120(5):994–1002

    Article  PubMed  Google Scholar 

  • Florin E, Gross J, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2010) Causality between local field potentials of the subthalamic nucleus and electromyograms of forearm muscles in Parkinson’s disease. Eur J Neurosci 31:491–498

    Article  PubMed  Google Scholar 

  • Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2011) Reliability of multivariate causality measures for neural data. J Neurosci Methods 198(2):344–358

    Article  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  PubMed  Google Scholar 

  • Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369

    Article  PubMed  Google Scholar 

  • Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126(Pt 2):326–342

    Article  PubMed  CAS  Google Scholar 

  • Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353. doi:10.1007/s002210100682

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Gourab K, Schindler-Ivens S, Schmit BD (2012) EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol. doi:10.1016/j.clinph.2012.08.021

    PubMed  Google Scholar 

  • Johnson AN, Wheaton LA, Shinohara M (2011) Attenuation of corticomuscular coherence with additional motor or non-motor task. Clin Neurophysiol 122:356–363

    Article  PubMed  Google Scholar 

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210

    Article  PubMed  CAS  Google Scholar 

  • Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36(3):785–792

    Article  PubMed  Google Scholar 

  • Kristeva-Feige R, Fritsch C, Timmer J, Lücking C-H (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1):124–131

    Article  PubMed  Google Scholar 

  • Langdon AJ, Boonstra TW, Breakspear M (2011) Multi-frequency phase locking in human somatosensory cortex. Prog Biophys Mol Biol 105:58–66. doi:10.1016/j.pbiomolbio.2010.09.015

    Article  PubMed  Google Scholar 

  • MacKinnon CD, Verrier MC, Tatton WG (2000) Motor cortical potentials precede long-latency EMG activity evoked by imposed displacements of the human wrist. Exp Brain Res 131(4):477–490

    Article  PubMed  CAS  Google Scholar 

  • Masakado Y, Nielsen JB (2008) Task-and phase-related changes in cortico-muscular coherence. Keio J Med 57(1):50–56

    Article  PubMed  Google Scholar 

  • Matthews PB (1993) Interaction between short- and long-latency components of the human stretch reflex during sinusoidal stretching. J Physiol 462:503–527

    PubMed  CAS  Google Scholar 

  • McClelland VM, Cvetkovic Z, Mills KR (2012) Modulation of corticomuscular coherence by peripheral stimuli. Exp Brain Res 219(2):275–292. doi:10.1007/s00221-012-3087-7

    Article  PubMed  Google Scholar 

  • Mendez-Balbuena I, Huethe F, Schulte-Mönting J, Leonhart R, Manjarrez E, Kristeva R (2011) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex 22(3):628–638

    Article  PubMed  Google Scholar 

  • Meng F, Tong K-Y, Chan S-T, Wong W-W, Lui K-H, Tang K-W, Gao X, Gao S (2009) Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans Neural Syst Rehabil Eng 17(3):234–243

    Article  PubMed  Google Scholar 

  • Mima T, Simpkins N, Oluwatimilehin T, Hallett M (1999) Force level modulates human cortical oscillatory activities. Neurosci Lett 275(2):77–80

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111(2):326–337. doi:10.1016/S1388-2457(99)00229-1

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Matsuoka T, Hallett M (2001a) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112(1):122–126

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Toma K, Koshy B, Hallett M (2001b) Coherence between cortical and muscular activities after subcortical stroke. Stroke 32(11):2597–2601

    Article  PubMed  CAS  Google Scholar 

  • Omlor W, Patino L, Mendez-Balbuena I, Schulte-Mönting J, Kristeva R (2011) Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. J Neurosci 31(22):8037–8045

    Article  PubMed  CAS  Google Scholar 

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719

    Article  PubMed  CAS  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869

    Article  PubMed  Google Scholar 

  • Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 573(Pt 3):843–855

    Article  PubMed  CAS  Google Scholar 

  • Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New York

    Book  Google Scholar 

  • Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. NeuroReport 14(3):321–324

    Article  PubMed  Google Scholar 

  • Riddle CN, Baker SN (2005) Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 566(Pt 2):625–639

    Article  PubMed  CAS  Google Scholar 

  • Riddle CN, Baker SN (2006) Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. Neuroimage 33(2):618–627

    Article  PubMed  Google Scholar 

  • Schouten AC, Campfens SF (2012) Directional coherence disentangles causality within the sensorimotor loop, but cannot open the loop. J Physiol 590(Pt 10):2529–2530; author reply 2531–2523. doi:10.1113/jphysiol.2012.228684

  • Seiss E, Hesse CW, Drane S, Oostenveld R, Wing AM, Praamstra P (2002) Proprioception-related evoked potentials: origin and sensitivity to movement parameters. Neuroimage 17(1):461–468

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087

    Article  PubMed  CAS  Google Scholar 

  • Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, Ushiba J (2011) Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of tibialis anterior muscle in healthy young adults. J Neurophysiol 106(3):1379–1388

    Article  PubMed  Google Scholar 

  • van der Meer JN, Schouten AC, Bour LJ, de Vlugt E, van Rootselaar AF, van der Helm FCT, Tijssen MAJ (2010) The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia. Exp Brain Res 202(3):1633–1642

    Article  Google Scholar 

  • van Rootselaar A-F, Maurits NM, Koelman JHTM, van der Hoeven JH, Bour LJ, Leenders KL, Brown P, Tijssen MAJ (2006) Coherence analysis differentiates between cortical myoclonic tremor and essential tremor. Mov Disord 21(2):215–222

    Article  PubMed  Google Scholar 

  • van Strien JW (1992) Classificatie van links-en rechtshandige proefpersonen. Nederlands tijdschrift voor de Psychologie 47:88–92

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  PubMed  CAS  Google Scholar 

  • Williams ER, Baker SN (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J Neurosci 29(20):6616–6624

    Article  PubMed  CAS  Google Scholar 

  • Williams ER, Soteropoulos DS, Baker SN (2009) Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol 102(2):1296–1309

    Article  PubMed  Google Scholar 

  • Witham CL, Riddle CN, Baker MR, Baker SN (2011) Contributions of descending and ascending pathways to corticomuscular coherence in humans. J Physiol 589(Pt 15):3789–3800. doi:10.1113/jphysiol.2011.211045

    Article  PubMed  CAS  Google Scholar 

  • Witte M, Patino L, Andrykiewicz A, Hepp-Reymond M-C, Kristeva R (2007) Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur J Neurosci 26(12):3564–3570

    Article  PubMed  Google Scholar 

  • Yang Q, Fang Y, Sun C-K, Siemionow V, Ranganathan VK, Khoshknabi D, Davis MP, Walsh D, Sahgal V, Yue GH (2009) Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res 1250:101–112

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Siemionow V, Yao W, Sahgal V, Yue GH (2010) Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 18(2):97–106

    Google Scholar 

  • Yao J, Dewald JPA (2006) Cortico-muscular communication during the generation of static shoulder abduction torque in upper limb following stroke. Conf Proc IEEE Eng Med Biol Soc 1:181–184

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Floor Campfens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campfens, S.F., Schouten, A.C., van Putten, M.J.A.M. et al. Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations. Exp Brain Res 228, 141–153 (2013). https://doi.org/10.1007/s00221-013-3545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3545-x

Keywords

Navigation