Skip to main content
Log in

The effect of removing visual information on reach control in young children

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Visual information about the hand, the reach space, and a target can all contribute to the control of a reaching movement. When visual information is removed, both feedforward mechanisms (involved in planning the movement) and feedback mechanisms (involved in correcting errors) may be affected. This study looks at how 4- to 5-year-old children use visual information to guide reaching movements. Children reached for a toy object in four conditions—in the light, in the dark while the toy was glowing, and in complete darkness after a 0-s delay and a 4-s delay. When a reach in the glowing condition was compared with a reach in the light, reaches were more curved, had a longer duration, and earlier time-to-peak-velocity than a reach in the light but the number of grasping responses were comparable to in the light condition. When a reach in the two dark conditions (0- and 4-s) was compared with a reach in the light, the number of grasping responses decreased and 14 and 31 % of reaches resulted in a miss, that is, no contact was made with the object. While we did not find any significant kinematic differences between the 0- and 4-s dark conditions, there was a significantly larger number of misses in the 4-s dark condition, suggesting that memory of target position may decay over time. Overall, removing vision of the hand and reach space in the glowing condition appears to affect the planning of a reach (as vision of the hand was not available at reach initiation) and feedback control, while removing vision of the object in the dark conditions has an effect on endpoint response as we found that children experience difficulty retrieving the object in the dark. While young children demonstrate more adult-like reach control (i.e., relatively longer deceleration time, increased reach duration) under reduced feedback conditions, they have difficulty retrieving the object in the dark, particularly after a 4-s delay, and it is possible that mechanisms guiding predictive control and visual memory are still developing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babinsky E, Braddick O, Atkinson J (2012) Infants and adults reaching in the dark. Exp Brain Res 217(2):237–249. doi:10.1007/s00221-011-2984-5

    Article  PubMed  Google Scholar 

  • Berthier NE, Clifton RK, Gullapalli V, McCall DD, Robin DJ (1996) Visual information and object size in the control of reaching. J Mot Behav 28(3):187–197

    Article  PubMed  Google Scholar 

  • Bradshaw MF, Watt SJ (2002) A dissociation of perception and action in normal human observers: the effect of temporal-delay. Neuropsychologia 40(11):1766–1778

    Article  PubMed  Google Scholar 

  • Bradshaw MF, Watt SJ, Elliott KM, Riddell PM (2004) The effects of a pre-movement delay on the kinematics of prehension in middle childhood. Hum Mov Sci 23(6):771–784

    Article  PubMed  Google Scholar 

  • Carrico RL, Berthier NE (2008) Vision and precision reaching in 15-month-old infants. Infant Behav Dev 31(1):62–70. doi:10.1016/j.infbeh.2007.07.005

    Google Scholar 

  • Churchill A, Hopkins B, Ronnqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Clifton RK, Muir DW, Ashmead DH, Clarkson MG (1993) Is visually guided reaching in early infancy a myth? Child Dev 64(4):1099–1110

    Article  PubMed  CAS  Google Scholar 

  • Clifton RK, Rochat P, Robin DJ, Berthier NE (1994) Multimodal perception in the control of infant reaching. J Exp Psychol Hum Percept Perform 20(4):876–886

    Article  PubMed  CAS  Google Scholar 

  • Connolly JD, Goodale MA (1999) The role of visual feedback of hand position in the control of manual prehension. Exp Brain Res 125(3):281–286

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL (2006) Development of forward models for hand localization and movement control in 6- to 10-year-old children. Hum Mov Sci 25(4–5):634–645

    Article  PubMed  Google Scholar 

  • Contreras-Vidal JL, Bo J, Boudreau JP, Clark JE (2005) Development of visuomotor representations for hand movement in young children. Exp Brain Res 162(2):155–164

    Article  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2003) Feedback or feedforward control: end of a dichotomy. In: Johnson-Frey S (ed) Taking action: cognitive neuroscience perspectives on intentional acts. MIT Press Cambridge, MA, pp 289–338

    Google Scholar 

  • Desmurget M, Rossetti Y, Prablanc C, Jeannerod M, Stelmach GE (1995) Representation of hand position prior to movement and motor variability. Can J Physiol Pharmacol 73(2):262–272

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Pélisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal-directed movements. Neurosci Biobehav Rev 22(6):761–788

    Article  PubMed  CAS  Google Scholar 

  • Fetters L, Todd J (1987) Quantitative assessment of infant reaching movements. J Mot Behav 19(2):147–166

    PubMed  CAS  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47(6):381

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM, Peterson JR (1964) Information capacity of discrete motor responses. J Exp Psychol 67(2):103

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Toni I, Chieffi S, Pavesi G (1994) The role of proprioception in the control of prehension movements—a kinematic study in a peripherally deafferented patient and in normal subjects. Exp Brain Res 99(3):483–500

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol 73(1):361–372

    PubMed  CAS  Google Scholar 

  • Goodale M, Jakobson L, Keillor J (1994) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32(10):1159–1178

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394(6695):780–784. doi:10.1038/29528

    Article  PubMed  CAS  Google Scholar 

  • Hesse C, Franz VH (2009) Memory mechanisms in grasping. Neuropsychologia 47(6):1532–1545

    Article  PubMed  Google Scholar 

  • Hu Y, Eagleson R, Goodale MA (1999) The effects of delay on the kinematics of grasping. Exp Brain Res 126(1):109–116

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1988) The neural and behavioural organization of goal-directed movements. Oxford psychology series vol 15. Clarendon Press, New York

    Google Scholar 

  • King BR, Pangelinan MM, Kagerer FA, Clark JE (2010) Improvements in proprioceptive functioning influence multisensory-motor integration in 7-to 13-year-old children. Neurosci Lett 483(1):36–40

    Article  PubMed  CAS  Google Scholar 

  • King BR, Oliveira MA, Contreras-Vidal JL, Clark JE (2012) Development of state estimation explains improvements in sensorimotor performance across childhood. J Neurophysiol. doi:10.1152/jn.00932.2011

    Google Scholar 

  • Konczak J, Dichgans J (1997) The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Exp Brain Res 117(2):346–354

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck J, Stolze H, Boczek-Funcke A, Jöhnk K, Heinrichs H, Illert M (1998a) Kinematic analysis of prehension movements in children. Behav Brain Res 93(1–2):131–141

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck J, Stolze H, Jöhnk K, Boczek-Funcke A, Illert M (1998b) Development of prehension movements in children: a kinematic study. Exp Brain Res 122(4):424–432

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Newell KM (2012) Visual feedback of hand trajectory and the development of infant prehension. Infant Behav Dev. doi:10.1016/j.infbeh.2011.12.004

    PubMed  Google Scholar 

  • Lee M-H, Ranganathan R, Newell KM (2011) Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy. Dev Psychobiol 53(7):685–693. doi:10.1002/dev.20541

    Article  PubMed  Google Scholar 

  • Loftus A, Servos P, Goodale MA, Mendarozqueta N, Mon-Williams M (2004) When two eyes are better than one in prehension: monocular viewing and end-point variance. Exp Brain Res 158(3):317–327. doi:10.1007/s00221-004-1905-2

    PubMed  Google Scholar 

  • Mathew A, Cook M (1990) The control of reaching movements by young infants. Child Dev 61(4):1238–1257

    Article  PubMed  CAS  Google Scholar 

  • McCarty ME, Ashmead DH (1999) Visual control of reaching and grasping in infants. Dev Psychol 35(3):620–631

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (2006) The visual brain in action. Oxford psychology series, vol 43, 2nd edn. Oxford University Press, Oxford

  • Newman C, Atkinson J, Braddick O (2001) The development of reaching and looking preferences in infants to objects of different sizes. Dev Psychol 37(4):561–572

    Article  PubMed  CAS  Google Scholar 

  • Olivier I, Hay L, Bard C, Fleury M (2007) Age-related differences in the reaching and grasping coordination in children: unimanual and bimanual tasks. Exp Brain Res 179(1):17–27

    Article  PubMed  Google Scholar 

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3(7):729–736

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67(2):455–469

    PubMed  CAS  Google Scholar 

  • Prablanc C, Echallier J, Komilis E, Jeannerod M (1979) Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35(2):113–124. doi:10.1007/BF00337436

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Pelisson D, Goodale MA (1986) Visual control of reaching movements without vision of the limb. I. Role of retinal feedback of target position in guiding the hand. Exp Brain Res 62(2):293–302

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Stelmach G, Desmurget M, Prablanc C, Jeannerod M (1994) The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Exp Brain Res 101(2):323–330

    Article  PubMed  CAS  Google Scholar 

  • Schneiberg S, Sveistrup H, McFadyen B, McKinley P, Levin MF (2002) The development of coordination for reach-to-grasp movements in children. Exp Brain Res 146(2):142–154

    Article  PubMed  Google Scholar 

  • Sheridan MD (1975) The developmental progress of infants and young children. HMSO, London

    Google Scholar 

  • Smyth MM, Katamba J, Peacock KA (2004a) Development of prehension between 5 and 10 years of age: distance scaling, grip aperture, and sight of the hand. J Mot Behav 36(1):91–103

    Article  PubMed  Google Scholar 

  • Smyth MM, Peacock KA, Katamba J (2004b) The role of sight of the hand in the development of prehension in childhood. Q J Exp Psychol A 57(2):269–296

    PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8(4):490–497

    PubMed  CAS  Google Scholar 

  • Thelen E, Corbetta D, Spencer JP (1996) Development of reaching during the first year: role of movement speed. J Exp Psychol Hum Percept Perform 22(5):1059–1076

    Article  PubMed  CAS  Google Scholar 

  • von Hofsten C (1979) Development of visually guided reaching: the approach phase. J Hum Mov Stud 5:160–178

    Google Scholar 

  • von Hofsten C (1984) Developmental changes in the organization of prereaching movements. Dev Psychol 20(3):378–388

    Article  Google Scholar 

  • von Hofsten C (1991) Structuring of early reaching movements: a longitudinal study. J Mot Behav 23(4):280–292. doi:10.1080/00222895.1991.9942039

    Article  Google Scholar 

  • von Hofsten C, Rosblad B (1988) The integration of sensory information in the development of precise manual pointing. Neuropsychologia 26(6):805–821

    Article  Google Scholar 

  • Watt SJ, Bradshaw MF, Clarke TJ, Elliot KM (2003) Binocular vision and prehension in middle childhood. Neuropsychologia 41(4):415–420

    Article  PubMed  Google Scholar 

  • Westwood DA, Goodale MA (2003) Perceptual illusion and the real-time control of action. Spat Vis 16(3–4):243–254

    Article  PubMed  Google Scholar 

  • White BL, Castle P, Held R (1964) Observations on the development of visually-directed reaching. Child Development 35:349–364

    Google Scholar 

  • Zoia S, Pezzetta E, Blason L, Scabar A, Carrozzi M, Bulgheroni M, Castiello U (2006) A comparison of the reach-to-grasp movement between children and adults: a kinematic study. Dev Neuropsychol 30(2):719–738

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the participants and their parents for their participation. We are grateful to Chris Colgate and Christie Mockford for help with data collection. This research was supported by U.K. Medical Research Council Grant G0601007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Babinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babinsky, E., Braddick, O. & Atkinson, J. The effect of removing visual information on reach control in young children. Exp Brain Res 222, 291–302 (2012). https://doi.org/10.1007/s00221-012-3216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3216-3

Keywords

Navigation