Skip to main content

Advertisement

Log in

The spatial range of contour integration deficits in schizophrenia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Contour integration (CI) refers to the process that represents spatially separated elements as a unified edge or closed shape. Schizophrenia is a psychiatric disorder characterized by symptoms such as hallucinations, delusions, disorganized thinking, inappropriate affect, and social withdrawal. Persons with schizophrenia are impaired at CI, but the specific mechanisms underlying the deficit are still not clear. Here, we explored the hypothesis that poor patient performance owes to reduced feedback or impaired longer-range lateral connectivity within early visual cortex—functionally similar to that found in 5- to 6-year old children. This hypothesis predicts that as target element spacing increases from .7 to 1.4° of visual angle, patient impairments will become more pronounced. As a test of the prediction, 25 healthy controls and 36 clinically stable, asymptomatic persons with schizophrenia completed a CI task that involved determining whether a subset of Gabor elements formed a leftward or rightward pointing shape. Adjacent shape elements were spaced at either .7 or 1.4° of visual angle. Difficulty in each spacing condition depended on the number of noise elements present. Patients performed worse than controls overall, both groups performed worse with the larger spacing, and the magnitude of the between-group difference was not amplified at the larger spacing. These results show that CI deficits in schizophrenia cannot be explained in terms of a reduced spatial range of integration, at least not when the shape elements are spaced within 1.5°. Later-developing, low-level integrative mechanisms of lateral connectivity and feedback appear not to be differentially impaired in the illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For more information on strategies for recruitment, inclusion/exclusion criteria, clinical rater training, clinical assessment of participants, and general testing procedures, see Henderson et al. (2012).

References

  • Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–8646

    PubMed  CAS  Google Scholar 

  • Braun J (1999) On the detection of salient contours. Spat Vis 12(2):211–225

    Article  PubMed  CAS  Google Scholar 

  • Chandna A, Pennefather PM, Kovács I, Norcia AM (2001) Contour integration deficits in anisometropic amblyopia. Invest Ophthalmol Vis Sci 42(3):875–878

    PubMed  CAS  Google Scholar 

  • Ciaramelli E, Leo F, Del Viva MM, Burr DC, Ladavas E (2007) The contribution of prefrontal cortex to global perception. Exp Brain Res 181(3):427–434. doi:10.1007/s00221-007-0939-7

    Article  PubMed  Google Scholar 

  • De Meyer K, Spratling MW (2009) A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation. Vision Res 49(5):553–568. doi:10.1016/j.visres.2008.12.017

    Article  PubMed  Google Scholar 

  • Del Viva MM, Agostini R (2007) Visual spatial integration in the elderly. Invest Ophthalmol Vis Sci 48(6):2940–2946. doi:10.1167/iovs.06-0729

    Article  PubMed  Google Scholar 

  • Doniger GM, Foxe JJ, Murray MM, Higgins BA, Javitt DC (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59(11):1011–1020

    Article  PubMed  Google Scholar 

  • Dresp B, Grossberg S (1997) Contour integration across polarities and spatial gaps: from local contrast filtering to global grouping. Vis Res 37(7):913–924

    Article  PubMed  CAS  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “association field”. Vis Res 33(2):173–193

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Miriam G, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition (SCID-I/NP). Biometrics Research, New York State Psychiatric Institute, New York, NY

  • Foxe JJ, Murray MM, Javitt DC (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927. doi:10.1093/cercor/bhi069

    Article  PubMed  Google Scholar 

  • Giersch A, Rhein V (2008) Lack of flexibility in visual grouping in patients with schizophrenia. J Abnorm Psychol 117(1):132–142. doi:10.1037/0021-843X.117.1.132

    Article  PubMed  Google Scholar 

  • Giersch A, Humphreys G, Boucart M, Kovács I (2000) The computation of occluded contours in visual agnosia: evidence for early computation prior to shape binding and figure-ground coding. Cogn Neuropsychol 17(8):731–759

    Article  PubMed  CAS  Google Scholar 

  • Gold JM, Fuller RL, Robinson BM, Braun EL, Luck SJ (2007) Impaired top-down control of visual search in schizophrenia. Schizophr Res 94(1–3):148–155. doi:10.1016/j.schres.2007.04.023

    Article  PubMed  Google Scholar 

  • Green MF, Lee J, Wynn JK, Mathis KI (2011) Visual masking in schizophrenia: overview and theoretical implications. Schizophr Bull 37(4):700–708. doi:10.1093/schbul/sbr051

    Article  PubMed  Google Scholar 

  • Grossberg S, Raizada R (2000) Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vis Res 40(10–12):1413–1432

    Article  PubMed  CAS  Google Scholar 

  • Hadad B-S, Maurer D, Lewis TL (2010) The development of contour interpolation: evidence from subjective contours. J Exp Child Psychol 106(2–3):163–176. doi:10.1016/j.jecp.2010.02.003

    Article  PubMed  Google Scholar 

  • Henderson D, Poppe AB, Barch DM, Carter CS, Gold JM, Ragland JD, Silverstein SM, Strauss ME, MacDonald AW III (2012) Optimization of a goal maintenance task for use in clinical applications. Schizophr Bull 38(1):104–113. doi:10.1093/schbul/sbr172

    Article  PubMed  Google Scholar 

  • Hess RF, Hayes A, Field DJ (2003) Contour integration and cortical processing. J Physiol Paris 97(2–3):105–119. doi:10.1016/j.jphysparis.2003.09.013

    Article  PubMed  CAS  Google Scholar 

  • Hollingshead AD, Redlich FC (1958) Social class and mental illness. Wiley, New York

    Book  Google Scholar 

  • Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35(6):1059–1064. doi:10.1093/schbul/sbp110

    Article  PubMed  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15(4):843–856

    Article  PubMed  CAS  Google Scholar 

  • Keane BP, Lu H, Papathomas TV, Silverstein SM, Kellman PJ (2012a) Is interpolation cognitively encapsulated? Measuring the effects of belief on Kanizsa shape discrimination and illusory contour formation. Cognition. doi:10.1016/j.cognition.2012.02.004

  • Keane BP, Mikkilineni D, Papathomas TV, Silverstein SM (2012b) Impaired shape integration but normal illusory contour formation in schizophrenia: evidence for a high level grouping deficit. Poster at Vision Sciences Society Conference, May, Naples, FL, vol 123, pp 404–418

  • Kingdom FAA, Prins N (2009) Psychophysics: a practical introduction. Academic Press, New York

    Google Scholar 

  • Knight RA, Silverstein SM (2001) A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. J Abnorm Psychol 110(1):15–30

    Article  PubMed  CAS  Google Scholar 

  • Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37(2):333–346

    Article  PubMed  CAS  Google Scholar 

  • Kovács I, Julesz B (1993) A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Natl Acad Sci USA 90(16):7495–7497

    Article  PubMed  Google Scholar 

  • Kovács I, Kozma P, Fehér A, Benedek G (1999) Late maturation of visual spatial integration in humans. Proc Natl Acad Sci USA 96(21):12204–12209

    Article  PubMed  Google Scholar 

  • Kozma-Weibe P, Silverstein SM, Fehér A, Kovács I, Uhlhaas P, Wilkniss SM (2006) Development of a world-wide web based contour integration test. Comput Hum Behav 22:971–980. doi:10.1016/j.chb.2004.03.017

    Article  Google Scholar 

  • Li W, Gilbert CD (2002) Global contour saliency and local colinear interactions. J Neurophysiol 88(5):2846–2856. doi:10.1152/jn.00289.2002

    Article  PubMed  Google Scholar 

  • Li W, Piëch V, Gilbert CD (2006) Contour saliency in primary visual cortex. Neuron 50(6):951–962. doi:10.1016/j.neuron.2006.04.035

    Article  PubMed  CAS  Google Scholar 

  • Loffler G (2008) Perception of contours and shapes: low and intermediate stage mechanisms. Vis Res 48(20):2106–2127. doi:10.1016/j.visres.2008.03.006

    Article  PubMed  Google Scholar 

  • Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64(1):34–39. doi:10.1016/j.biopsych.2008.02.014

    Article  PubMed  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487. doi:10.1523/JNEUROSCI.0333-10.2010

    PubMed  CAS  Google Scholar 

  • Mandon S, Kreiter AK (2005) Rapid contour integration in macaque monkeys. Vis Res 45(3):291–300. doi:10.1016/j.visres.2004.08.010

    Article  PubMed  Google Scholar 

  • McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57(7):637–648

    Article  PubMed  CAS  Google Scholar 

  • Mitelman SA, Buchsbaum MS (2007) Very poor outcome schizophrenia: clinical and neuroimaging aspects. Int Rev Psychiatry 19(4):345–357. doi:10.1080/09540260701486563

    Article  PubMed  Google Scholar 

  • Must A, Janka Z, Benedek G, Kéri S (2004) Reduced facilitation effect of collinear flankers on contrast detection reveals impaired lateral connectivity in the visual cortex of schizophrenia patients. Neurosci Lett 357(2):131–134. doi:10.1016/j.neulet.2003.12.046

    Article  PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799

    Article  Google Scholar 

  • Patterson TL, Goldman S, McKibbin CL, Hughs T, Jeste DV (2001) UCSD performance-based skills assessment: development of a new measure of everyday functioning for severely mentally ill adults. Schizophr Bull 27(2):235–245

    Article  PubMed  CAS  Google Scholar 

  • Phillips WA, Silverstein SM (2003) Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26(1):65–82; discussion 82–137

    Google Scholar 

  • Pillow J, Rubin N (2002) Perceptual completion across the vertical meridian and the role of early visual cortex. Neuron 33(5):805–813

    Article  PubMed  CAS  Google Scholar 

  • Place EJ, Gilmore GC (1980) Perceptual organization in schizophrenia. J Abnorm Psychol 89(3):409–418

    Article  PubMed  CAS  Google Scholar 

  • Schneider LC, Struening EL (1983) SLOF: a behavioral rating scale for assessing the mentally ill. Soc Work Res Abstr 19:9–21

    PubMed  CAS  Google Scholar 

  • Shipley TF, Kellman PJ (1992) Strength of visual interpolation depends on the ratio of physically specified to total edge length. Percept Psychophys 52(1):97–106

    Article  PubMed  CAS  Google Scholar 

  • Silverstein SM, Keane BP (2011a) Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. Schizophr Bull 37(4):690–699. doi:10.1093/schbul/sbr052

    Article  PubMed  Google Scholar 

  • Silverstein SM, Keane BP (2011b) Vision science and schizophrenia research: toward a re-view of the disorder editors’ introduction to special section. Schizophr Bull 37(4):681–689. doi:10.1093/schbul/sbr053

    Article  PubMed  Google Scholar 

  • Silverstein SM, Knight RA, Schwarzkopf SB, West LL, Osborn LM, Kamin D (1996) Stimulus configuration and context effects in perceptual organization in schizophrenia. J Abnorm Psychol 105(3):410–420

    Article  PubMed  CAS  Google Scholar 

  • Silverstein SM, Kovacs I, Corry R, Valone C (2000) Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophr Res 43(1):11–20

    Article  PubMed  CAS  Google Scholar 

  • Silverstein SM, Hatashita-Wong M, Schenkel LS, Wilkniss S, Kovacs I, Feher A, Smith T, Goicochea C, Uhlhaas P, Carpiniello K, Savitz A (2006) Reduced top-down influences in contour detection in schizophrenia. Cogn Neuropsychiatry 11(2):112–132. doi:10.1080/13546800444000209

    Article  PubMed  Google Scholar 

  • Silverstein SM, Berten S, Essex B, Kovacs I, Susmaras T, Little DM (2009) An fMRI examination of visual integration in schizophrenia. J Integr Neurosci 8(2):175–202

    Article  PubMed  Google Scholar 

  • Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750

    Article  PubMed  CAS  Google Scholar 

  • Strauss ME, Barch DM, Carter CS, Keane BP, Gold JM, Ragland JD, Silverstein SM, MacDonald AW III (in preparation) Test-retest reliability for cognitive psychometric tests in schizophrenia

  • Uhlhaas PJ, Silverstein SM (2005) Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull 131(4):618–632. doi:10.1037/0033-2909.131.4.618

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM (2006) Perceptual grouping in disorganized schizophrenia. Psychiatry Res 145(2–3):105–117. doi:10.1016/j.psychres.2005.10.016

    Article  PubMed  Google Scholar 

  • van Assche M, Giersch A (2011) Visual organization processes in schizophrenia. Schizophr Bull 37(2):394–404. doi:10.1093/schbul/sbp084

    Article  PubMed  Google Scholar 

  • Ventura J, Green MF, Shaner A, Liberman RP (1993a) Training and quality assurance on the Brief Psychiatric Rating Scale: the “drift busters”. Int J Methods Psychiatric Res 3:221–226

    Google Scholar 

  • Ventura J, Lukoff D, Nuechterlein KH, Liberman RP, Green MF, Shaner A (1993b) Brief Psychiatric Rating Scale (BPRS) expanded version: scales, anchor points, and administration manual. Int J Methods Psychiatric Res 3:227–243

  • Volk DW, Lewis DA (2010) Prefrontal cortical circuits in schizophrenia. Curr Top Behav Neurosci 4:485–508

    Article  PubMed  Google Scholar 

  • Wechsler D (2001) Wechsler test of adult reading. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wichmann F, Hill N (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63(8):1293–1313

    Article  PubMed  CAS  Google Scholar 

  • Zhang NR, von der Heydt R (2010) Analysis of the context integration mechanisms underlying figure-ground organization in the visual cortex. J Neurosci 30(19):6482–6496. doi:10.1523/JNEUROSCI.5168-09.2010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the following Research Assistants for helping to bring this project to completion: Robin S. Lyons, Yushi Wang, Jamie Joseph (UMDNJ); Emily Thomason, Cindy Feldt, Jennifer Shuite, Melissa Cornejo (Washington University, St. Louis); Sharon August, Leeka Hubzin, Samual Kaiser, Tatyanna Matveeva (MPRC); Dori Henderson, Madelyn Steen, Anna Schnurrer, Joe Lowinske, Lindsay Swanson (Minnesota); and Brittaney Haley (UC-Davis). We also appreciate the input of four anonymous reviewers whose extensive comments improved the manuscript. Funding for this research was provided by the following collaborative RO1s: MH084828-01 to SMS (UMDNJ), MH84840 to DMB (Washington University, St. Louis), MH084826 to CSC and JDR (UC Davis), MH084821 to JG (MPRC), and MH084861 to AM (Minnesota). Support from an F32 (MH094102-01A1) was provided to BPK (UMDNJ/Rutgers) during the write-up of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Keane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keane, B.P., Silverstein, S.M., Barch, D.M. et al. The spatial range of contour integration deficits in schizophrenia. Exp Brain Res 220, 251–259 (2012). https://doi.org/10.1007/s00221-012-3134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3134-4

Keywords

Navigation