Skip to main content
Log in

Modulation of somatosensory evoked potentials during force generation and relaxation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study investigated the modulation of somatosensory evoked potentials (SEPs) during precisely controlled force generation and force relaxation in a visuomotor tracking task. Subjects were instructed to track a target line with a line that represented their own force generated by grip movement with the right hand as accurately as possible during concurrent electrical stimulation. The target force line moved up continuously from 0 to 20 % of maximal voluntary contraction (MVC) (the force generation phase: FG phase) and moved down from 20 to 0 % of MVC (the force relaxation phase: FR phase) in 7 s at a constant velocity. We separately obtained SEPs following electrical stimulation of the median nerve at the wrist in each phase. During the visuomotor tracking task, compared with the stationary condition, the N30 at Fz and P27 at C3′ showed a significant reduction in amplitude in the FG and FR phases. In addition, the N30 and P27 were significantly smaller in amplitude in the FG than FR phase. Although the average amount of force exertion was the same in the FG and FR phases, the modulation of SEP amplitude was larger in the FG phase. These results indicated that sensorimotor integration in the somatosensory area was dependent on the context of movement exertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114(Pt 6):2465–2503

    Article  PubMed  Google Scholar 

  • Burton H, Abend NS, MacLeod AM, Sinclair RJ, Snyder AZ, Raichle ME (1999) Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. Cereb Cortex 9:662–674

    Article  PubMed  CAS  Google Scholar 

  • Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334

    Article  PubMed  CAS  Google Scholar 

  • Cheron G, Borenstein S (1987) Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr Clin Neurophysiol 67:537–548

    Article  PubMed  CAS  Google Scholar 

  • Cheron G, Borenstein S (1991) Gating of the early components of the frontal and parietal somatosensory evoked potentials in different sensory-motor interference modalities. Electroencephalogr Clin Neurophysiol 80:522–530

    Article  PubMed  CAS  Google Scholar 

  • Cohen LG, Starr A (1985) Vibration and muscle contraction affect somatosensory evoked potentials. Neurology 35:691–698

    Article  PubMed  CAS  Google Scholar 

  • Cohen LG, Starr A (1987) Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain 110(Pt 2):451–467

    Article  PubMed  Google Scholar 

  • Craggs MD, Rothwell JC, Rushton DN (1979) Gating of somatosensory evoked potentials by active and passive movements in man [proceedings]. J Physiol 295:96P–97P

    PubMed  CAS  Google Scholar 

  • Desmedt JE, Bourguet M (1985) Color imaging of parietal and frontal somatosensory potential fields evoked by stimulation of median or posterior tibial nerve in man. Electroencephalogr Clin Neurophysiol 62:1–17

    PubMed  CAS  Google Scholar 

  • Desmedt JE, Cheron G (1981) Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components. Electroencephalogr Clin Neurophysiol 52:553–570

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Tomberg C (1989) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroencephalogr Clin Neurophysiol 74:321–346

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Nguyen TH, Bourguet M (1987) Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephalogr Clin Neurophysiol 68:1–19

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, Forster B (2003) Modulations of early somatosensory ERP components by transient and sustained spatial attention. Exp Brain Res 151:24–31

    Article  PubMed  Google Scholar 

  • Garcia-Larrea L, Bastuji F, Mauguiere F (1991) Mapping study of somatosensory potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80:201–214

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120-to-N140 transition. Psychophysiology 32:526–537

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40:145–155

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J, Hömberg V (1991) Modification of cortical somatosensory evoked potentials during tactile exploration and simple active and passive movements. Electroencephalogr Clin Neurophysiol 81:216–223

    Article  PubMed  CAS  Google Scholar 

  • Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14:851–857

    Article  PubMed  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1990) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80:333–344

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1991) Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp Brain Res 84:342–354

    Article  PubMed  CAS  Google Scholar 

  • Johansen-Berg H, Christensen V, Woolrich M, Matthews PM (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. NeuroReport 11:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74:36–45

    Article  PubMed  CAS  Google Scholar 

  • Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y (1995) Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci 128:195–204

    Article  PubMed  CAS  Google Scholar 

  • Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R (2006a) Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage 32:1355–1364

    Article  PubMed  Google Scholar 

  • Kida T, Wasaka T, Nakata H, Kakigi R (2006b) Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement. Exp Brain Res 169:289–301

    Article  PubMed  Google Scholar 

  • Knecht S, Kunesch E, Buchner H, Freund HJ (1993) Facilitation of somatosensory evoked potentials by exploratory finger movements. Exp Brain Res 95:330–338

    Article  PubMed  CAS  Google Scholar 

  • Kristeva-Feige R, Rossi S, Pizzella V, Lopez L, Erne SN, Edrich J, Rossini PM (1996) A neuromagnetic study of movement-related somatosensory gating in the human brain. Exp Brain Res 107:504–514

    Article  PubMed  CAS  Google Scholar 

  • Legon W, Staines WR (2006) Predictability of the target stimulus for sensory-guided movement modulates early somatosensory cortical potentials. Clin Neurophysiol 117:1345–1353

    Article  PubMed  Google Scholar 

  • Michie PT (1984) Selective attention effects on somatosensory event-related potentials. Ann N Y Acad Sci 425:250–255

    Article  PubMed  CAS  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R (2003) Mechanisms of differences in gating effects on short-and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 15:211–222

    Article  PubMed  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  PubMed  CAS  Google Scholar 

  • Pope PA, Holton A, Hassan S, Kourtis D, Praamstra P (2007) Cortical control of muscle relaxation: a lateralized readiness potential (LRP) investigation. Clin Neurophysiol 118:1044–1052

    Article  PubMed  Google Scholar 

  • Rauch R, Angel RW, Boylls CC (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Electroencephalogr Clin Neurophysiol 62:421–425

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Gigli GL, Marciani MG, Zarola F, Caramia M (1987) Non-invasive evaluation of input-output characteristics of sensorimotor cerebral areas in healthy humans. Electroencephalogr Clin Neurophysiol 68:88–100

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Babiloni F, Bernardi G, Cecchi L, Johnson PB, Malentacca A, Stanzione P, Urbano A (1989) Abnormalities of short-latency somatosensory evoked potentials in parkinsonian patients. Electroencephalogr Clin Neurophysiol 74:277–289

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Caramia D, Bassetti MA, Pasqualetti P, Tecchio F, Bernardi G (1996) Somatosensory evoked potentials during the ideation and execution of individual finger movements. Muscle Nerve 19:191–202

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Babiloni C, Babiloni F, Ambrosini A, Onorati P, Carducci F, Urbano A (1999) “Gating” of human short-latency somatosensory evoked cortical responses during execution of movement. A high resolution electroencephalography study. Brain Res 843:161–170

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Higuchi K, Obeso JA (1998) The offset cortical potential: an electrical correlate of movement inhibition in man. Mov Disord 13:330–335

    Article  PubMed  CAS  Google Scholar 

  • Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465–491

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Nakajima T, Wasaka T, Kida T, Nakata H, Endoh T, Nishihira Y, Komiyama T (2004) Load- and cadence-dependent modulation of somatosensory evoked potentials and Soleus H-reflexes during active leg pedaling in humans. Brain Res 1029:272–285

    Article  PubMed  CAS  Google Scholar 

  • Schubert B, Ritter P, Wustenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1—a simultaneous EEG-fMRI study. Cereb Cortex 18:2686–2700

    Article  PubMed  Google Scholar 

  • Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Slimp JC, Tamas LB, Stolov WC, Wyler AR (1986) Somatosensory evoked potentials after removal of somatosensory cortex in man. Electroencephalogr Clin Neurophysiol 65:111–117

    Article  PubMed  CAS  Google Scholar 

  • Spraker MB, Corcos DM, Vaillancourt DE (2009) Cortical and subcortical mechanisms for precisely controlled force generation and force relaxation. Cereb Cortex 19:2640–2650

    Article  PubMed  Google Scholar 

  • Staines WR, Brooke JD, Cheng J, Misiaszek JE, MacKay WA (1997a) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. I. Kinaesthetic task demands. Exp Brain Res 115:147–155

    Article  PubMed  CAS  Google Scholar 

  • Staines WR, Brooke JD, Misiaszek JE, McIlroy WE (1997b) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. II. Correlation with rate of stretch of extensor muscles of the leg. Exp Brain Res 115:156–164

    Article  PubMed  CAS  Google Scholar 

  • Staines WR, Graham SJ, Black SE, McIlroy WE (2002) Task-relevant modulation of contralateral and ipsilateral primary somatosensory cortex and the role of a prefrontal-cortical sensory gating system. Neuroimage 15:190–199

    Article  PubMed  Google Scholar 

  • Tinazzi M, Fiaschi A, Mauguiere F, Manganotti P, Polo A, Bonato C, Zanette G (1998) Effects of voluntary contraction on tibial nerve somatosensory evoked potentials: gating of specific cortical responses. Neurology 50:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Nishizawa N, Konishi J, Shibasaki H (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19:3527–3534

    PubMed  CAS  Google Scholar 

  • Wasaka T, Kakigi R (2012) Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. Neuroimage 59:1501–1507

    Article  PubMed  Google Scholar 

  • Wasaka T, Hoshiyama M, Nakata H, Nishihira Y, Kakigi R (2003) Gating of somatosensory evoked magnetic fields during the preparatory period of self-initiated finger movement. Neuroimage 20:1830–1838

    Article  PubMed  Google Scholar 

  • Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R (2005a) Differential modulation in human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci 22:1239–1247

    Article  PubMed  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005b) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166:118–125

    Article  PubMed  CAS  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005c) Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. Brain Res Cogn Brain Res 23:354–360

    Article  PubMed  Google Scholar 

  • Wasaka T, Kida T, Nakata H, Kakigi R (2006) Pre-movement modulation of tibial nerve SEPs caused by a self-initiated dorsiflexion. Clin Neurophysiol 117:2023–2029

    Article  PubMed  Google Scholar 

  • Zopf R, Giabbiconi CM, Gruber T, Muller MM (2004) Attentional modulation of the human somatosensory evoked potential in a trial-by-trial spatial cueing and sustained spatial attention task measured with high density 128 channels EEG. Brain Res Cogn Brain Res 20:491–509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Y. Takeshima for help in devising, constructing, and maintaining the equipment used in this study. This study is the result of “Development of biomarker candidates for social behavior” carried out under the Strategic Research Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan. This study was supported by a Grant-in-Aid for Young Scientists (B) to T.W. (23700689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Wasaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasaka, T., Kida, T. & Kakigi, R. Modulation of somatosensory evoked potentials during force generation and relaxation. Exp Brain Res 219, 227–233 (2012). https://doi.org/10.1007/s00221-012-3082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3082-z

Keywords

Navigation