Skip to main content
Log in

Audio-visual facilitation of the mu rhythm

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies demonstrate that perception of action presented audio-visually facilitates greater mirror neuron system (MNS) activity in humans (Kaplan and Iacoboni in Cogn Process 8(2):103–113, 2007) and non-human primates (Keysers et al. in Exp Brain Res 153(4):628–636, 2003) than perception of action presented unimodally. In the current study, we examined whether audio-visual facilitation of the MNS can be indexed using electroencephalography (EEG) measurement of the mu rhythm. The mu rhythm is an EEG oscillation with peaks at 10 and 20 Hz that is suppressed during the execution and perception of action and is speculated to reflect activity in the premotor and inferior parietal cortices as a result of MNS activation (Pineda in Behav Brain Funct 4(1):47, 2008). Participants observed experimental stimuli unimodally (visual-alone or audio-alone) or bimodally during randomized presentations of two hands ripping a sheet of paper, and a control video depicting a box moving up and down. Audio-visual perception of action stimuli led to greater event-related desynchrony (ERD) of the 8–13 Hz mu rhythm compared to unimodal perception of the same stimuli over the C3 electrode, as well as in a left central cluster when data were examined in source space. These results are consistent with Kaplan and Iacoboni’s (in Cogn Process 8(2):103–113, 2007), findings that indicate audio-visual facilitation of the MNS; our left central cluster was localized approximately 13.89 mm away from the ventral premotor cluster identified in their fMRI study, suggesting that these clusters originate from similar sources. Consistency of results in electrode space and component space support the use of ICA as a valid source localization tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262

    PubMed  CAS  Google Scholar 

  • Barraclough NE, Xiao D, Baker CI, Oram MW, Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. J Cogn Neurosci 17(3):377–391

    Article  PubMed  Google Scholar 

  • Belouchrani A, Abed-Meraim K, Cardoso J (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45(2):434–444

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300

    Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Euro J Neurosci 13:400–404

    CAS  Google Scholar 

  • Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10(11):649–657

    Article  PubMed  CAS  Google Scholar 

  • Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J (1998) Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol 107(4):287–295

    Article  PubMed  CAS  Google Scholar 

  • Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Euro J Neurosci 11(5):1839–1842

    Article  CAS  Google Scholar 

  • Cohen-Seat G, Gastaut H, Faure J, Heuyer G (1954) Etudes expérimentales de l’activité nerveuse pendant la projection cinématographique. Rev Int Filmologie 5:7–64

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180

    Article  PubMed  Google Scholar 

  • Driver J (1996) Enhancement of selective listening by illusory mislocation of speech sounds due to lip-reading. Nature 381(2):66–68

    Article  PubMed  CAS  Google Scholar 

  • DuBose CN, Cardello AV, Maller O (1980) Effects of colorants and flavorants on identification perceived flavor intensity and hedonic quality of fruit flavored beverages and cake. J Food Sci 45(5):1393–1399

    Article  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73(6):2608–2611

    PubMed  CAS  Google Scholar 

  • Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15(2):213–218

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Campball J, Pike G, Petrides M (2008) Dissociating human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28(45):11435–11444

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(2):593

    Article  PubMed  Google Scholar 

  • Gastaut HJ, Bert J (1954) EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr Clin Neurophysiol 6(3):433

    PubMed  CAS  Google Scholar 

  • Gazzola V, Aziz-Zadeh L, Keysers C (2006) Empathy and the somatotopic auditory mirror system in humans. Curr Biol 16(18):1824–1829

    Article  PubMed  CAS  Google Scholar 

  • Giard M, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11(5):473–490

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by PET: 2. Observation compared with imagination. Exp Brain Res 112:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci 95(25):15061

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP et al (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98:13995–13999

    Article  PubMed  CAS  Google Scholar 

  • Jousmäki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8(6):190

    Article  Google Scholar 

  • Kaplan JT, Iacoboni M (2007) Multimodal action representation in human left ventral premotor cortex. Cogn Process 8(2):103–113

    Article  PubMed  Google Scholar 

  • Keuken MC, Hardie A, Dorn BT, Dev S, Paulus MP, Jonas KJ et al (2011) The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Res 1383(6):196–205

    Article  PubMed  CAS  Google Scholar 

  • Keysers C, Kohler E, Umiltà MA, Nanetti L, Fogassi L, Gallese V (2003) Audiovisual mirror neurons and action recognition. Exp Brain Res 153(4):628–636

    Article  PubMed  CAS  Google Scholar 

  • Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297(5582):846

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C et al (2003a) EEG-correlated fMRI of human alpha activity. Neuroimage 19(4):1463–1476

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A et al (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100(19):11053

    Article  PubMed  CAS  Google Scholar 

  • Le Bel RM, Pineda JA, Sharma A (2009) Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders. J Commun Disord 42(4):299–304

    Article  PubMed  Google Scholar 

  • Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 87:1329–1335

    PubMed  Google Scholar 

  • Meredith MA, Stein BE (1986) Visual auditory and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662

    PubMed  CAS  Google Scholar 

  • Moore A, Gorodnitsky I, Pineda J (2012) EEG mu component responses to viewing emotional faces. Behav Brain Res 226(1):309–316

    Article  PubMed  Google Scholar 

  • Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20:750–756

    Article  PubMed  CAS  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW, McNair NA (2004) Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res 19(2):195–201

    Article  Google Scholar 

  • Neuper C, Wortz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222

    Article  PubMed  Google Scholar 

  • Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83(1):62–69

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Aranibar A (1979) Evaluation of event-related decynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46:138–146

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Neuper C, Andrew C, Edlinger G (1997) Foot and hand area mu rhythms. Int J Psychophysiol 26:121–135

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Neuper C, Krausz G (2000) Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 111(10):1873–1879

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA (2005) The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Rev 50(1):57–68

    Article  PubMed  Google Scholar 

  • Pineda JA (2008) Sensorimotor cortex as a critical component of an’extended’mirror neuron system: does it solve the development correspondence and control problems in mirroring? Behav Brain Funct 4(1):47

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996a) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3(2):131–141

    Article  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E et al (1996b) Localization of grasp representation in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670

    Article  PubMed  CAS  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2(12):1131

    Article  PubMed  CAS  Google Scholar 

  • Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S et al (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Euro J Neurosci 22(11):2917–2926

    Article  CAS  Google Scholar 

  • Skipper JI, Nusbaum HC, Small SL (2005) Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25(1):76–89

    Article  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, MA, USA

    Google Scholar 

  • Thompson WF, Russo RA, Livingstone S (2010) Facial expressions of pitch structure in music performance. Psychon Bull Rev 17:317–322

    Article  PubMed  Google Scholar 

  • Walden BE, Prosek RA, Montgomery AA, Scherr CK, Jones CJ (1977) Effects of training on the visual recognition of consonants. J Speech Hear Res 20:130–145

    PubMed  CAS  Google Scholar 

  • Welch RB, DutionHurt LD, Warren DH (1986) Contributions of audition and vision to temporal rate perception attention perception. Psychophysics 39(4):294–300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stacy Levichev for her assistance with data collection. Thanks also to the EEGlab discussion group at UCSD for advice regarding independent components analysis. This work was funded by an Ontario International Education Opportunity Scholarship awarded to L.M. McGarry and a grant from the Natural Sciences and Engineering Research Council of Canada to F.A. Russo. Support was also provided by a grant to J.A. Pineda from the Department of Defense (DOD) Office of the Congressionally Directed Medical Research Programs (CDMRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy M. McGarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGarry, L.M., Russo, F.A., Schalles, M.D. et al. Audio-visual facilitation of the mu rhythm. Exp Brain Res 218, 527–538 (2012). https://doi.org/10.1007/s00221-012-3046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3046-3

Keywords

Navigation