Skip to main content
Log in

People post-stroke perceive movement fluency in virtual reality

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated the visual perception of biological movement by people post-stroke, using minimal kinematic displays. A group of twenty patients and a group of twelve age-matched healthy controls were asked to judge movement fluency. The movements to judge were either displayed as an end-point dot or as a stick-figure of the arm and trunk. It was found that the perception of movement fluency was preserved post-stroke, however, with an increase in the variability of judgment. Moreover, the end-point dot representation ameliorated what was perceived and judged, presumably by directing attention to the important kinematic cues: smoothness and directness of the trajectory. We conclude that, despite perception of actions is influenced by the ability of the observer to execute the observed movement, hemiparesis has a mild effect on the perception of biological movement. Yet, a valuable virtual learning environment for upper-limb rehabilitation should be implemented to provide the observer with neither too much, nor too little information to maximize learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auvray M, Hoellinger T, Hanneton S, Roby-Brami A (2011) Perceptual weight judgements when viewing one’s own and others’ movements under minimalist conditions of visual presentation. Perception 40:1081–1103

    Article  PubMed  Google Scholar 

  • Azouvi P, Olivier S, de Montety G, Samuel C, Louis-Dreyfus A, Tesio L (2003) Behavioral assessment of unilateral neglect: study of the psychometric properties of the Caterine Bergego scale. Arch Phys Med Rehabil 84:51–57

    Article  PubMed  Google Scholar 

  • Battelli L, Cavanagh P, Thornton IM (2003) Perception of biological motion in parietal patients. Neuropsychologia 41:1808–1816

    Article  PubMed  Google Scholar 

  • Bosecker C, Dipietro L, Volpe B, Krebs HI (2009) Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair 24(1):62–69

    PubMed  Google Scholar 

  • Brochard S, Robertson J, Medee B, Remy-Neris O (2010) What’s new in new technologies for upper extremity rehabilitation? Curr Opin Neurol 23(6):683–687

    Article  PubMed  Google Scholar 

  • Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15(8):1243

    Article  PubMed  CAS  Google Scholar 

  • Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16(19):1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Fiorio M, Cesari P, Bresciani MC, Tinazzi M (2010) Expertise with pathological actions modulates a viewers motor system. Neuroscience 167:691–699

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Goodglass H, Kaplan E, Barresi B (2001) The assessment of aphasia and related disorders, 3rd edn. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Guadagnoli MA, Lee TD (2004) Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav 36(2):212–224

    Article  PubMed  Google Scholar 

  • Hallett M (2001) Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 36(2–3):169–174

    Article  PubMed  CAS  Google Scholar 

  • Hayes SJ, Hodges NJ, Huys R, Williams AM (2007) End-point focus manipulations to determine what information is used during observational learning. Acta Psychol (Amst) 126(2):120–137

    Article  Google Scholar 

  • Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil 14(2):52–61

    Article  PubMed  Google Scholar 

  • Holden MK (2005) Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 8(3):187–211

    Article  PubMed  Google Scholar 

  • Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 6:5

    Article  PubMed  Google Scholar 

  • Jacob P (2009) The tuning-fork model of human social cognition: a critique. Conscious Cogn 18(1):229–243

    Article  PubMed  Google Scholar 

  • Latash ML, Anson JG (1996) What are “normal movements” in atypical populations? Behav Brain Sci 19(01):55–68

    Article  Google Scholar 

  • McCrea PH, Eng JJ (2004) Consequences of increased neuromotor noise for reaching movements in persons with stroke. Exp Brain Res 162(1):70–77

    Article  PubMed  Google Scholar 

  • Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G, Stam HJ, Smits M, Ribbers GM, Bussman JB (2011) Motor recovery and reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair 25(3):223–233

    Article  PubMed  Google Scholar 

  • Nys GMS, van Zandvoort MJE, de Kort PLM, Jansen BPW, de Haan EHF (2007) Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovasc Dis 23:408–416

    Article  PubMed  CAS  Google Scholar 

  • Platz T, Pinkowski C, Van Wijck F, Kim IH, di Bella P, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: a multicentre study. Clin Rehabil 19(4):404

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror neuron system. Annu Rev Neurosci 27(1):169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fabbri-Destro M, Cattaneo L (2009) Mirror neurons and their clinical relevance. Nat Clin Pract Neurol 5(1):24–34

    Article  PubMed  Google Scholar 

  • Robertson JVG, Hoellinger T, Lindberg P, Bensmail D, Hanneton S, Roby-Bramy A (2009) Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study. J Neuroeng Rehabil 6(1):45

    Article  PubMed  Google Scholar 

  • Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N (2002) Movement smoothness changes during stroke recovery. J Neurosci 22(18):8297–8304

    PubMed  CAS  Google Scholar 

  • Saygin AP (2007) Superior temporal and premotor brain areas necessary for biological motion perception. Brain 130(9):2452

    Article  PubMed  Google Scholar 

  • Serino A, De Filippo L, Casavecchia C, Coccia M, Shiffrar M, Làvadas E (2010) Lesions to the motor system affect action perception. J Cogn Neurosci 22(3):413–426

    Article  PubMed  Google Scholar 

  • Shadmehr R, Wise SP (2005) Computational neurobiology of reaching and pointing. A foundation for motor learning. MIT Press, Cambridge

    Google Scholar 

  • Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25(41):9339–9346

    Article  PubMed  CAS  Google Scholar 

  • van der Lee JH, de Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM (2001) The intra and interrater reliability of the action research arm test: a practical test of upper-extremity function in patients with stroke. Arch Phys Med Rehabil 82:14–19

    Article  PubMed  Google Scholar 

  • Viviani P, Stucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum Percept Perform 18(3):603–623

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed as part of the MoJOS project (http://www.mojos.fr/home/) funded by the Ministère de l’économie, de l’industrie et de l’emploi (MoJOS-092930679). The authors wish to thank all participants and clinicians, especially P. Armingaud and V. Cros, for their support and valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Mottet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dokkum, L., Mottet, D., Bonnin-Koang, HY. et al. People post-stroke perceive movement fluency in virtual reality. Exp Brain Res 218, 1–8 (2012). https://doi.org/10.1007/s00221-011-2995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2995-2

Keywords

Navigation