Skip to main content
Log in

Monitoring antisaccades: inter-individual differences in cognitive control and the influence of COMT and DRD4 genotype variations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Conscious monitoring of behavior is an essential control function for adaptation and learning. Antisaccade performance was investigated in a large sample of young healthy men in two tasks, one that required conscious error monitoring and one that did not. Conscious error monitoring did not lead to changes in error rate between the two tasks, while other antisaccade parameters were significantly modulated. Application of signal detection theory showed a large inter-individual variability in error detection sensitivity: the majority of individuals were unable to monitor antisaccade errors (chance error detection group), while a minority that successfully monitored their errors (non-chance error detection group) were worse in antisaccade performance in both tasks. These results were explained by the hypothesis of two modes of antisaccade processing favored by each one of the two groups: a mode of conscious cortical cognitive control leading to error monitoring, worse performance and no post-error adaptation and a mode of non-conscious subcortical control leading to chance error monitoring, post-error slowing and better performance of the antisaccade task. This hypothesis was corroborated by the results of the genotype analysis. Error-monitoring sensitivity in the non-chance error detection group was modulated by COMT genotype variations that in turn did not have an effect on error rate. On the other hand, DRD4 genotype variations were related to differences in antisaccade error rate while not affecting error-monitoring sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avramopoulos D, Stefanis NC, Hantoumi I, Smyrnis N, Evdokimidis I et al (2002) Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Mol Psychiatry 7:706–711

    Article  CAS  PubMed  Google Scholar 

  • Blasi G, Mattay VS, Bertolino A, Elvevag B, Callicott JH et al (2005) Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 25:5038–5045

    Article  CAS  PubMed  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    Article  CAS  PubMed  Google Scholar 

  • Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 12:539–546

    Article  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D et al (1998) Anterior cingulate cortex, error detection and the online monitoring of performance. Science 280:747–749

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Amer J Hum Genet 75:807–821

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922

    Article  CAS  PubMed  Google Scholar 

  • Endrass T, Franke C, Kathmann N (2005) Error awareness in a saccade countermanding task. J Psychophysiol 19:275–280

    Article  Google Scholar 

  • Endrass T, Reuter B, Kathmann N (2007) ERP correlates of conscious error cognition: aware and unaware errors in an antisaccade task. Eur J Neurosci 26:1714–1720

    Article  PubMed  Google Scholar 

  • Evdokimidis I, Smyrnis N, Constantinidis TS, Stefanis NC, Avramopoulos D et al (2002) The antisaccade task in a sample of 2,006 young men. I. Normal population characteristics. Exp Brain Res 147:45–52

    Article  CAS  PubMed  Google Scholar 

  • Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Weber H (1992) Characteristics of “anti” saccades in man. Exp Brain Res 89:415–424

    Article  CAS  PubMed  Google Scholar 

  • Fossella J, Sommer T, Fan J, Wu Y, Swanson JM et al (2002) Assessing the molecular genetics of attention networks. BMC Neurosci 3:14

    Article  PubMed  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instruction. Exp Brain Res 18:1279–1296

    CAS  Google Scholar 

  • Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine and the error-related negativity. Psychol Rev 109:679–699

    Article  PubMed  Google Scholar 

  • Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY et al (2007) Neural correlates of error awareness. Neuroimage 34:1774–1781

    Article  PubMed  Google Scholar 

  • Krämer UM, Cunillera T, Càmara E, Marco-Pallarés J, Cucurell D et al (2007) The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J Neurosci 27:14190–14198

    Article  PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Marco-Pallarés J, Camara E, Münte TF, Rodríguez-Fornells A (2008) Neural mechanisms underlying adaptive actions after slips. J Cogn Neurosci 20:1595–1610

    Article  PubMed  Google Scholar 

  • Massen C (2004) Parallel programming of exogenous and endogenous components in the antisaccade task. Q J Exp Psychol A 57:475–498

    PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Mokler A, Fischer B (1999) The recognition and correction of involuntary prosaccades in an antisaccade task. Exp Brain Res 125:511–516

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nature 5:218–228

    CAS  Google Scholar 

  • Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GPH, Kok A (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38:752–760

    Article  CAS  PubMed  Google Scholar 

  • Oak JN, Oldenhof J, Van Tol HHM (2000) The dopamine D4 receptor: one decade of research. Eur J Pharmacol 405:303–327

    Article  CAS  PubMed  Google Scholar 

  • Okuyama Y, Ishiguro H, Toru M, Arinami T (1999) A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Bioph Res Co 258:292–295

    Article  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Milea D, Muri R (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25

    Article  PubMed  Google Scholar 

  • Rabbitt PM (1966) Errors and error-correction in choice-response tasks. J Exp Psychol 71:264–272

    Article  CAS  PubMed  Google Scholar 

  • Rabbitt PM (2002) Consciousness is slower than you think. Q J Exp Psychol A 55:1081–1092

    PubMed  Google Scholar 

  • Riba J, Rodriguez-Fornells A, Monte A, Munte TF, Barbanoj MJ (2005) Noradrenergic stimulation enhances human action monitoring. J Neurosci 25:4370–4374

    Article  CAS  PubMed  Google Scholar 

  • Ridderinkhof KR, Van den Wildenberg WPM, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response, inhibition, performance monitoring and reward-based learning. Brain Cogn 56:129–140

    Article  PubMed  Google Scholar 

  • Rubinstein M, Philips TJ, Bunjow JR, Falzone TL, Driewczapolski G et al (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine and methamphetamine. Cell 90:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Schall JD, Stuphorn V, Brown JW (2002) Monitoring and control of action by the frontal lobes. Neuron 36:309–322

    Article  CAS  PubMed  Google Scholar 

  • Smyrnis N, Evdokimidis I, Stefanis NC, Constantinidis TS, Avramopoulos D et al (2002) The antisaccade task in a sample of 2, 006 young males. II. Effects of task parameters. Exp Brain Res 147:53–63

    Article  CAS  PubMed  Google Scholar 

  • Smyrnis N, Evdokimidis I, Stefanis NC, Avramopoulos D, Constantinidis TS et al (2003) Antisaccade performance of 1,273 men: effects of schizotypy, anxiety, and depression. J Abnorm Psychol 112:403–414

    Article  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. The Iowa State University Press, Ames

    Google Scholar 

  • Van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77:477–482

    Article  PubMed  Google Scholar 

  • Velanova K, Wheeler ME, Luna B (2008) Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cereb Cortex 18:2505–2522

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant “EKBAN 97” to Professor C.N. Stefanis from the General Secretariat of Research and Technology of the Greek Ministry of Development.

Conflict of interest statement

“Intrasoft Co” provided the technical support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Smyrnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kattoulas, E., Evdokimidis, I., Stefanis, N.C. et al. Monitoring antisaccades: inter-individual differences in cognitive control and the influence of COMT and DRD4 genotype variations. Exp Brain Res 203, 453–463 (2010). https://doi.org/10.1007/s00221-010-2250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2250-2

Keywords

Navigation