Skip to main content
Log in

Robot-assisted modifications of gait in healthy individuals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 10 April 2010

Abstract

This study investigated whether short-term modifications of gait could be induced in healthy adults and whether a combination of kinetic (a compliant force resisting deviation of the foot from the prescribed footpath) and visual guidance was superior to either kinetic guidance or visual guidance alone in producing this modification. Thirty-nine healthy adults, 20–33 years old, were randomly assigned to the three groups receiving six 10-min blocks of treadmill training requiring them to modify their footpath to match a scaled-down path. Changes of the footpath, specific joint events and joint moments were analyzed. Persons receiving combined kinetic and visual guidance showed larger modifications of their gait patterns that were maintained longer, persisting up to 2 h after intervening over-ground activities, than did persons receiving training with primarily kinetic guidance or with visual guidance alone. The results emphasize the short-term plasticity of locomotor circuits and provide a possible basis for persons learning to achieve more functional gait patterns following a stroke or other neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold AS, Schwartz MH, Thelen DG, Delp SL (2007) Contributions of muscles to terminal-swing knee motions vary with walking speed. J Biomech 40:3660–3671

    Article  PubMed  Google Scholar 

  • Banala S, Agrawal SK, Fattah A, Krishnamoorthy V, Hsu WL, Scholz JP, Rudolph K (2006) Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans Robotics 22:1228–1237

    Article  Google Scholar 

  • Banala S, Kulpe A, Agrawal SK (2007) A powered leg orthosis for gait rehabilitation of motor-impaired patients. In: IEEE international conference on robotics and automation, Rome, Italy, pp 4140–4145

  • Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17:2–8

    Article  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (1997) Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J Neurophysiol 78:1421–1432

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (2003) Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 90:3372–3383

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Rankin A, Poppele R (1996) Representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol 76:715–726

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb endpoint based or joint-level based? J Neurophysiol 83:2931–2945

    PubMed  CAS  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  PubMed  CAS  Google Scholar 

  • Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor adaptation in normal aging. Learn Mem 10:55–63

    Article  PubMed  Google Scholar 

  • Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR (2006) Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 26:10564–10568

    Article  PubMed  CAS  Google Scholar 

  • Choi JT, Bastian AJ (2007) Adaptation reveals independent control networks for human walking. Nat Neurosci 10:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Colborne GR, Olney SJ, Griffin MP (1993) Feedback of ankle joint angle and soleus electromyography in the rehabilitation of hemiplegic gait. Arch Phys Med Rehabil 74:1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700

    PubMed  CAS  Google Scholar 

  • Daly JJ, Hogan N, Perepezko EM, Krebs HI, Rogers JM, Goyal KS, Dohring ME, Fredrickson E, Nethery J, Ruff RL (2005) Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 42:723–736

    Article  PubMed  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  PubMed  CAS  Google Scholar 

  • Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N (2007) Changing motor synergies in chronic stroke. J Neurophysiol 98:757–768

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Shadmehr R (2004) Change of desired trajectory caused by training in a novel motor task. Conf Proc IEEE Eng Med Biol Soc 6:4495–4498

    PubMed  CAS  Google Scholar 

  • Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84:477–482

    Article  PubMed  Google Scholar 

  • Fedirchuk B, Nielsen J, Petersen N, Hultborn H (1998) Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus). Exp Brain Res 122:351–361

    Article  PubMed  CAS  Google Scholar 

  • Franklin DW, So U, Burdet E, Kawato M (2007) Visual feedback is not necessary for the learning of novel dynamics. PLoS One 2:e1336

    Article  PubMed  Google Scholar 

  • Goldberg EJ, Requejo PS, Fowler E.G (2009) Joint moment contributions to swing phase knee extension acceleration during gait in children with spastic hemiplegic cerebral palsy. J Biomech (in press)

  • Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Lacquaniti F (2004) Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping. Exp Brain Res 157:377–382

    Article  PubMed  Google Scholar 

  • Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37:701–708

    PubMed  CAS  Google Scholar 

  • Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR (2008) Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39:1786–1792

    Article  PubMed  Google Scholar 

  • Husemann B, Muller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 38:349–354

    Article  PubMed  Google Scholar 

  • Hwang EJ, Smith MA, Shadmehr R (2006) Adaptation and generalization in acceleration-dependent force fields. Exp Brain Res 169:496–506

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2009) Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res Bull 78:13–21

    Article  PubMed  CAS  Google Scholar 

  • Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Shadmehr R (2006) Consolidation of motor memory. Trends Neurosci 29:58–64

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: consolidation, interference, and forgetting. J Neurosci 25:473–478

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:275–307

    Google Scholar 

  • Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L (2007) Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 21:307–314

    Article  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    Article  PubMed  CAS  Google Scholar 

  • Morris ME, Matyas TA, Bach TM, Goldie PA (1992) Electrogoniometric feedback: its effect on genu recurvatum in stroke. Arch Phys Med Rehabil 73:1147–1154

    PubMed  CAS  Google Scholar 

  • Morton SM, Bastian AJ (2003) Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol 89:1844–1856

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke J (1994) Computational Geometry in C. Cambridge University Press, New York

    Google Scholar 

  • Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168:368–383

    Article  PubMed  Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. Slack Incorporated, Thorofare

    Google Scholar 

  • Perry J, Garrett M, Gronley JK, Mulroy SJ (1995) Classification of walking handicap in the stroke population. Stroke 26:982–989

    PubMed  CAS  Google Scholar 

  • Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoolig G, Koch R, Hesse S (2007) Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil 21:17–27

    Article  PubMed  CAS  Google Scholar 

  • Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37:653–662

    PubMed  CAS  Google Scholar 

  • Reisman DS, Block HJ, Bastian AJ (2005) Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 94:2403–2415

    Article  PubMed  Google Scholar 

  • Reisman DS, Wityk R, Silver K, Bastian AJ (2007) Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 130:1861–1872

    Article  PubMed  Google Scholar 

  • Reisman DS, Wityk R, Silver K, Bastian AJ (2009) Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair 23:735–744

    Article  PubMed  Google Scholar 

  • Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA (2005) Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol 93:3200–3213

    Article  PubMed  Google Scholar 

  • Schmidt RA (1988) Motor control and learning: a behavioral emphasis. Human Kinetics Publishers Inc, Champaign

    Google Scholar 

  • Scholz JP, Schoner G, Latash ML (2000) Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 135:382–404

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Shadmehr R, Moussavi ZM (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20:7807–7815

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83:720–728

    Article  PubMed  Google Scholar 

  • Teasell RW, Bhogal SK, Foley NC, Speechley MR (2003) Gait retraining post stroke. Topic Stroke Rehabil 10:34–65

    Google Scholar 

  • Tong C, Wolpert DM, Flanagan JR (2002) Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J Neurosci 22:1108–1113

    PubMed  CAS  Google Scholar 

  • Tong RK, Ng MF, Li LS (2006) Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil 87:1298–1304

    Article  PubMed  Google Scholar 

  • Winstein CJ (1991) Knowledge of results and motor learning–implications for physical therapy. Phys Ther 71:140–149

    PubMed  CAS  Google Scholar 

  • Yanagihara D, Kondo I (1996) Nitric oxide plays a key role in adaptive control of locomotion in cat. Proc Natl Acad Sci USA 93:13292–13297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Center for Medical Rehabilitation Research, Grant HD38582 for support of this work. The authors also acknowledge the earlier assistance of Dr. Wei-Li Hsu, National Taiwan University, on the initial pilot experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Scholz.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-010-2238-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Banala, S.K., Brackbill, E.A. et al. Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 202, 809–824 (2010). https://doi.org/10.1007/s00221-010-2187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2187-5

Keywords

Navigation