Skip to main content

Advertisement

Log in

Responses of thoracic spinal interneurons to vestibular stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Vestibular influences on outflow from the spinal cord are largely mediated via spinal interneurons, although few studies have recorded interneuronal activity during labyrinthine stimulation. The present study determined the responses of upper thoracic interneurons of decerebrate cats to electrical stimulation of the vestibular nerve or natural stimulation of otolith organs and the anterior and posterior semicircular canals using rotations in vertical planes. A majority of thoracic interneurons (74/102) responded to vestibular nerve stimulation at median latencies of 6.5 ms (minimum of ~3 ms), suggesting that labyrinthine inputs were relayed to these neurons through trisynaptic and longer pathways. Thoracic interneuronal responses to vertical rotations were similar to those of graviceptors such as otolith organs, and a wide array of tilt directions preferentially activated different cells. Such responses were distinct from those of cells in the cervical and lumbar enlargements, which are mainly elicited by ear-down tilts and are synchronous with stimulus position when low rotational frequencies are delivered, but tend to be in phase with stimulus velocity when high frequencies are employed. The dynamic properties of thoracic interneuronal responses to tilts were instead similar to those of thoracic motoneurons and sympathetic preganglionic neurons. However, the preferred tilt directions of the interneurons were more heterogeneous than thoracic spinal outputs, showing that the outputs do not simply reflect an addition of local interneuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barman SM, Gebber GL (1984) Spinal interneurons with sympathetic nerve-related activity. Am J Physiol 247:R761–R767

    PubMed  CAS  Google Scholar 

  • Brophy GM, Rossiter CD, Bolton PS, Yates BJ (1997) Vestibular influences on cat lumbar paravertebral muscles. Neurosci Lett 223:189–192

    Article  PubMed  CAS  Google Scholar 

  • Estes MS, Blanks RH, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249

    PubMed  CAS  Google Scholar 

  • Gacek RR (1969) The course and central termination of first order neurons supplying vestibular end organs in the cat. Acta-Otolaryngol Suppl 254:1–66

    PubMed  CAS  Google Scholar 

  • Gebber GL, McCall RB (1976) Identification and discharge patterns of spinal sympathetic interneurons. Am J Physiol 231:722–733

    PubMed  CAS  Google Scholar 

  • Institute for Laboratory Animal Research (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington

    Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257

    Article  PubMed  CAS  Google Scholar 

  • Kasper J, Schor RH, Wilson VJ (1988) Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 60:1753–1764

    PubMed  CAS  Google Scholar 

  • Kerman IA, McAllen RM, Yates BJ (2000) Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res Bull 53:11–16

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood PA, Munson JB, Sears TA, Westgaard RH (1988) Respiratory interneurones in the thoracic spinal cord of the cat. J Physiol 395:161–192

    PubMed  CAS  Google Scholar 

  • Kirkwood PA, Schmid K, Sears TA (1993) Functional identities of thoracic respiratory interneurones in the cat. J Physiol 461:667–687

    PubMed  CAS  Google Scholar 

  • Kushiro K, Bai R, Kitajima N, Sugita-Kitajima A, Uchino Y (2008) Properties and axonal trajectories of posterior semicircular canal nerve-activated vestibulospinal neurons. Exp Brain Res 191:257–264

    Article  PubMed  Google Scholar 

  • Money KE, Scott JW (1962) Functions of separate sensory receptors of nonauditory labyrinth of the cat. Am J Physiol 202:1211–1220

    PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R (1964) Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J Comp Neurol 122:355–367

    Article  PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R, Mascitti TA (1964) Sites and mode of termination of fibers of the vestibulospinal tract in the cat. An experimental study with silver impregnation methods. J Comp Neurol 122:369–383

    Article  PubMed  CAS  Google Scholar 

  • Petras JM (1967) Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Res 6:275–324

    Article  PubMed  CAS  Google Scholar 

  • Petrillo GA, Glass L (1984) A theory for phase locking of respiration in cats to a mechanical ventilator. Am J Physiol 246:R311–R320

    PubMed  CAS  Google Scholar 

  • Ray CA, Hume KM, Shortt TL (1997) Skin sympathetic outflow during head-down neck flexion in humans. Am J Physiol Regul Integr Comp Physiol 273:R1142–R1146

    CAS  Google Scholar 

  • Roberts TDM (1978) Neurophysiology of postural mechanisms. Butterworths, London

    Google Scholar 

  • Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284

    PubMed  CAS  Google Scholar 

  • Schmid K, Kirkwood PA, Munson JB, Shen E, Sears TA (1993) Contralateral projections of thoracic respiratory interneurones in the cat. J Physiol 461:647–665

    PubMed  CAS  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann N Y Acad Sci 656:190–204

    Article  PubMed  CAS  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    PubMed  CAS  Google Scholar 

  • Schor RH, Suzuki I, Timerick SJB, Wilson VJ (1986) Responses of interneurons in the cat cervical cord to vestibular tilt stimulation. J Neurophysiol 56:1147–1156

    PubMed  CAS  Google Scholar 

  • Schramm LP (2006) Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Prog Brain Res 152:27–37

    Article  PubMed  Google Scholar 

  • Suzuki I, Timerick SJB, Wilson VJ (1985) Body position with respect to head or body position in space is coded by lumbar interneurons. J Neurophysiol 54:123–133

    PubMed  CAS  Google Scholar 

  • Tang X, Neckel ND, Schramm LP (2003) Locations and morphologies of sympathetically correlated neurons in the T(10) spinal segment of the rat. Brain Res 976:185–193

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Neckel ND, Schramm LP (2004) Spinal interneurons infected by renal injection of pseudorabies virus in the rat. Brain Res 1004:1–7

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Kudo N, Tsuda K, Iwamura Y (1970) Vestibular inhibition of sympathetic nerve activities. Brain Res 22:195–206

    Article  PubMed  CAS  Google Scholar 

  • Voustianiouk A, Kaufmann H, Diedrich A, Raphan T, Biaggioni I, Macdougall H, Ogorodnikov D, Cohen B (2006) Electrical activation of the human vestibulo-sympathetic reflex. Exp Brain Res 171:251–261

    Article  PubMed  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York

    Google Scholar 

  • Wilson VJ, Yoshida M, Schor RH (1970a) Monosynaptic excitation and inhibition of thoracic motoneurons by fibers in the medial longitudinal fasciculus. Brain Res 18:181–184

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Yoshida M, Schor RH (1970b) Supraspinal monosynaptic excitation and inhibition of thoracic back motoneurons. Exp Brain Res 11:282–295

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Gacek RR, Maeda M, Uchino Y (1977) Saccular and utricular input to cat neck motoneurons. J Neurophysiol 40:63–73

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Schor RH, Suzuki I, Park BR (1986) Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol 55:514–526

    PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092

    PubMed  CAS  Google Scholar 

  • Yates BJ, Jakus J, Miller AD (1993) Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res 629:209–217

    Article  PubMed  CAS  Google Scholar 

  • Zakir M, Ono S, Meng H, Uchino Y (2000) Saccular and utricular influences on sympathetic nerve activities in cats. Exp Brain Res 134:402–406

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zakir M, Meng H, Sato H, Uchino Y (2001) Convergence of the horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 140:1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lucy Cotter, Allison Waggoner, and Michael Bonadio for technical assistance. Funding was provided by Grant R01-DC03732 from the National Institutes of Health (USA). Core support was provided by NIH grant P30-DC05205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.M., Reighard, D.A., Mehta, A.S. et al. Responses of thoracic spinal interneurons to vestibular stimulation. Exp Brain Res 195, 89–100 (2009). https://doi.org/10.1007/s00221-009-1754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1754-0

Keywords

Navigation