Skip to main content
Log in

Auditory feedback affects the long-range correlation of isochronous serial interval production: support for a closed-loop or memory model of timing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Long-range dependence is a characteristic property of successively produced time intervals, such as in un-paced or continuation tapping. We hypothesise in the present paper that serial dependence in such tasks could be related to a closed-loop regulation process, in which the current interval is determined by preceding ones. As a consequence, the quality of sensory feedback is likely to affect serial dependence. An experiment with human participants shows that diminished sensory information tends to increase the Hurst exponent for short inter-onset intervals and tends to decrease it for long intervals. A simulation shows that a simple auto-regressive model, whose order depends on the ratio between the inter-onset interval and an assumed temporal integration span, is able to account for most of our empirical results, including the duration specificity of long-range correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The experimental system incorporates a delay from obstructing the light beam to the corresponding MIDI message being sent of less than 3 ms, from start of the MIDI message to the start of the sound of ~4.5 ms, and in the operation of the program of less than 1 ms. The MIDI asynchronous communication clock frequency of 31.25 kHz leads to a estimated minimum temporal variability of 32 µs. The trigger and sound devices have similar clock frequencies and hence also temporal variability in the same range.

References

  • Bak P (1997) How nature works. Oxford University Press, Oxford

    Google Scholar 

  • Balasubramaniam R, Wing AM, Daffertshofer A (2004) Keeping with the beat: movement trajectories contribute to movement timing. Exp Brain Res 159:129–134

    PubMed  Google Scholar 

  • Billon M, Semjen A, Cole J, Gauthier G (1996) The role of sensory information in the production of periodic finger-tapping sequences. Exp Brain Res 110:117–130

    Article  PubMed  CAS  Google Scholar 

  • Block RA, Zakay D (2006) Prospective remembering involves time estimation. In: Glicksohn J, Myslobodsky MS (eds) Timing the future. The case for a time-based prospective memory. World Scientific Printers, London, pp 25–49

    Google Scholar 

  • Chen Y, Repp BH, Patel AD (2002) Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. Hum Mov Sci 21:515–532

    Article  PubMed  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Delignières D, Lemoine L, Torre K (2004) Time intervals production in tapping and oscillatory motion. Hum Mov Sci 23:87–103

    Article  PubMed  Google Scholar 

  • Delignières D, Torre K, Lemoine L (2008) Fractal models for event-based and dynamical timers. Acta Psychol 127:382–397

    Article  Google Scholar 

  • Drewing K, Hennings M, Aschersleben G (2002) The contribution of tactile reafference to temporal regularity during bimanual finger tapping. Psychol Res 66:60–70

    Article  PubMed  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annu Phys 322:549–560

    Article  Google Scholar 

  • Finney SA, Warren WH (2002) Delayed auditory feedback and rhythmic tapping: evidence for a critical interval shift. Percept Psychophys 64:896–908

    PubMed  Google Scholar 

  • Fraisse P (1980) Les synchronizations sensori-motrices aux rhythmes. In: Requin JE (ed) Anticipation et Comportement. Editions de C.N.R.S., Paris, pp 233–257

    Google Scholar 

  • Fraisse P (1984) Perception and estimation of time. Annu Rev 35:1–36

    Article  CAS  Google Scholar 

  • Fraisse P, Voillaume C (1971) Les repéres du sujet dans la synchronisation et dans la pseudo-synchronisation. Psych Franc 71:359–369

    CAS  Google Scholar 

  • Fraisse P, Oléron G, Paillard J (1958) Sur le repéres sensoriels qui permettent de controler les mouvements d’accompagnements de stimuli périodiques. Ann Psychol 58:321–338

    Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Gilden DL (1997) Fluctuations in the time required for elementary decisions. Psychol Sci 8:296–301

    Article  Google Scholar 

  • Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108:33–56

    Article  PubMed  CAS  Google Scholar 

  • Gilden DL, Thornton T, Mallon MW (1995) 1/f noise in human cognition. Science 267:1837–1839

    Article  PubMed  CAS  Google Scholar 

  • Grondin S, Meilleur-Wells G, Oullette C, Macar F (1998) Sensory effects on jugdments of short time-intervals. Psychol Res 61:261–268

    Article  PubMed  CAS  Google Scholar 

  • Halpern AR, Darwin CL (1982) Duration discrimination in a series of rhythmic events. Percept Psychophys 31:86–89

    PubMed  CAS  Google Scholar 

  • James W (1890) The principles of psychology, vol 1. Holt, New York

    Google Scholar 

  • Kolers PA, Brewster JM (1985) Rhythms and responses. J Exp Psychol Hum Percept Perform 11:150–167

    Article  PubMed  CAS  Google Scholar 

  • Lemoine L, Torre K, Delignières D (2006) Testing for the presence of 1/f noise in continuation tapping data. Can J Exp Psychol 60:247–257

    Google Scholar 

  • Lewis PA, Miall RC (2006) Remembering the time: a continuous clock. Trends Cogn Sci 10:401–406

    Article  PubMed  Google Scholar 

  • Madison G (2001a) Functional modelling of the human timing mechanism. PhD thesis, Uppsala University Library, Uppsala

  • Madison G (2001b) Variability in isochronous tapping: higher-order dependencies as a function of inter tap interval. J Exp Psychol Hum Percept Perform 27:411–422

    Article  PubMed  CAS  Google Scholar 

  • Madison G (2004a) Detection of linear temporal drift in sound sequences: principles and empirical evaluation. Acta Psychol 117:95–118

    Article  Google Scholar 

  • Madison G (2004b) Fractal modeling of human isochronous serial interval production. Biol Cybern 90:105–112

    Article  PubMed  Google Scholar 

  • Madison G (2006) Duration specificity in the long-range correlation of human serial interval production. Physica D 216:301–306

    Article  Google Scholar 

  • Madison G, Merker B (2004) Human sensorimotor tracking of continuous subliminal deviations from isochrony. Neurosci Lett 370:69–73

    Article  PubMed  CAS  Google Scholar 

  • Madison G, Forsman L, Blom Ö, Karabanov A, Ullén F (2008) Correlations between general intelligence and components of serial timing variability. Intelligence. doi:10.1016/j.intell.2008.07.006

  • Mandelbrot BB, van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  • Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340

    Article  PubMed  CAS  Google Scholar 

  • Michon JA (1978) The making of the present. A tutorial review. In: Requin JE (ed) Attention and performance. Erlbaum, Hillsdale, pp 89–111

    Google Scholar 

  • Peng C-K, Buldyrev V, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Pfordresher PQ (2003) Auditory feedback in music performance: evidence for a dissociation of sequencing and timing. J Exp Psychol Hum Percept Perform 29:949–964

    Article  PubMed  Google Scholar 

  • Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61

    Article  Google Scholar 

  • Pressing J (1998) Error correction processes in temporal pattern production. J Math Psychol 42:63–101

    Article  PubMed  Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12:969–992

    PubMed  Google Scholar 

  • Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739

    Article  PubMed  Google Scholar 

  • Staddon JER (2005) Interval timing: memory, not a clock. Trends Cogn Sci 9:312–314

    Article  PubMed  CAS  Google Scholar 

  • Staddon JER, Chelaru IM, Higa JJ (2002) Habituation, memory and the brain: the dynamics of interval timing. Behav Processes 57:71–88

    Article  PubMed  CAS  Google Scholar 

  • Stenneken P, Prinz W, Cole J, Paillard J, Aschersleben G (2006) The effect of sensory feedback on the timing of movements: evidence from deafferented patients. Brain Res 1084:123–131

    Article  PubMed  CAS  Google Scholar 

  • Stevens LT (1886) On the time-sense. Mind 11:393–404

    Article  Google Scholar 

  • Thaut MH, Tian B, Azimi-Sadjadi MR (1998) Rhythmic finger tapping to cosine-wave modulated metronome sequences: evidence of subliminal entrainment. Hum Mov Sci 17:839–863

    Article  Google Scholar 

  • Torre K, Delignières D, Lemoine L (2007a) 1/f(beta) fluctuations in bimanual coordination: an additional challenge for modeling. Exp Brain Res 183(2):225–234

    Google Scholar 

  • Torre K, Delignières D, Lemoine L (2007b) Detection of long-range dependence and estimation of fractal exponents through ARFIMA modelling. Br J Math Stat Psychol 60(1):85–106

    Google Scholar 

  • van Orden GC, Holden JG, Turvey MT (2005) Human cognition and 1/f scaling. J Exp Psychol Gen 134:117–123

    Article  PubMed  Google Scholar 

  • Vorberg D, Wing AM (1996) Modeling variability and dependence in timing. In: Heuer H, Keele SW (eds) Handbook of perception and action, vol 2: Motor skills. Academic Press, New York, pp 181–262

    Google Scholar 

  • Wagenmakers E-J, Farrell S, Ratcliff R (2004) Estimation and interpretation of 1/f(alpha) noise in human cognition. Psychon Bull Rev 11(4):579–615

    Google Scholar 

  • Wearden JH (1999) “Beyond the fields we know…”: exploring and developing scalar timing theory. Behav Process 45:3–21

    Article  Google Scholar 

  • Wing AM (1977) Perturbations of auditory feedback delay and the timing of movement. J Exp Psychol Hum Percept Perform 3:175–186

    Article  PubMed  CAS  Google Scholar 

  • Wing AM, Kristofferson A (1973) Response delays and the timing of discrete motor responses. Percept Psychophys 14:5–12

    Google Scholar 

  • Yamada N (1995) Nature of variability in rhythmical movement. Hum Mov Sci 14:371–384

    Article  Google Scholar 

Download references

Acknowledgment

Part of this work was supported by grant RJ 2002:0791 from the Bank of Sweden Tercentenary Foundation to Dr. Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Madison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, G., Delignières, D. Auditory feedback affects the long-range correlation of isochronous serial interval production: support for a closed-loop or memory model of timing. Exp Brain Res 193, 519–527 (2009). https://doi.org/10.1007/s00221-008-1652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1652-x

Keywords

Navigation