Skip to main content
Log in

Degree of handedness affects intermanual transfer of skill learning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Intermanual transfer of skill learning has often been used as a paradigm to study functional specialization and hemispheric interactions in relation to handedness. This literature has not evaluated whether degree of handedness impacts learning and intermanual transfer. Because handedness scores are related to factors that might influence intermanual transfer, such as engagement of the ipsilateral hemisphere during movement (Dassonville et al. in Proc Natl Acad Sci USA 94:14015–14018, 1997) and corpus callosum volume (Witelson in Science 229:665–668, 1985; Brain 112:799–835, 1989), we tested whether degree of handedness is correlated with transfer magnitude. We had groups of left and right handed participants perform a sensorimotor adaptation task and a sequence learning task. Following learning with either the dominant or nondominant hand, participants transferred to task performance with the other hand. We evaluated whether the magnitude of learning and intermanual transfer were influenced by either direction and/or degree of handedness. Participants exhibited faster sensorimotor adaptation with the right hand, regardless of whether they were right or left handed. In addition, less strongly left handed individuals exhibited better intermanual transfer of sensorimotor adaptation, while less strongly right handed individuals exhibited better intermanual transfer of sequence learning. The findings suggest that involvement of the ipsilateral hemisphere during learning may influence intermanual transfer magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965

    PubMed  CAS  Google Scholar 

  • Cherbuin N, Brinkman C (2006a) Efficiency of callosal transfer and hemispheric interaction. Neuropsychology 20:178–184

    Article  PubMed  Google Scholar 

  • Cherbuin N, Brinkman C (2006b) Hemispheric interactions are different in left-handed individuals. Neuropsychology 20:700–707

    Article  PubMed  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:18–621

    Article  Google Scholar 

  • Criscimagner-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–173

    Article  Google Scholar 

  • Cunningham HA, Welch RB (1994) Multiple concurrent visual-motor mappings: implications for models of adaptation. J Exp Psychol Hum Percept Perform 20:987–999

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018

    Article  PubMed  CAS  Google Scholar 

  • de Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M (1999) Callosal and cortical contribution to procedural learning. Brain 122:1049–1062

    Article  PubMed  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167

    Article  PubMed  CAS  Google Scholar 

  • Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145

    Article  PubMed  CAS  Google Scholar 

  • Goble DJ, Brown SH (2008a) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610

    Article  PubMed  Google Scholar 

  • Goble DJ, Brown SH (2008b) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99(6):3063–3074

    Article  PubMed  Google Scholar 

  • Gordon AM, Forssberg H, Iwasaki N (1994) Formation and lateralization of internal representations underlying motor commands during precision grip. Neuropsychologia 32:555–568

    Article  PubMed  CAS  Google Scholar 

  • Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3:397–400

    Article  PubMed  CAS  Google Scholar 

  • Hicks RE (1974) Asymmetry of bilateral transfer. Am J Psychol 87:667–674

    Article  Google Scholar 

  • Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson S, Lee LH, Gaab N, Schlaug G (2003) Cerebellar volume of musicians. Cereb Cortex 13:943–949

    Article  PubMed  Google Scholar 

  • Huynh H, Feldt LS (1970) Conditions under which the mean square ratios in repeated measures designs have exact F-distributions. J Am Stat Assoc 65:1582–1589

    Article  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M, Ito M, Fukuda H (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 18:3979–3983

    Article  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516

    Article  PubMed  CAS  Google Scholar 

  • Inui N (2005) Coupling of force variability in bimanual tapping with asymmetrical force. Motor Control 9:164–179

    PubMed  Google Scholar 

  • Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997a) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337

    PubMed  CAS  Google Scholar 

  • Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997b) Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324

    PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Kimura T, Uka T (1997) Prism adaptation of reaching movements: specificity for the velocity of reaching. J Neurosci 17:1481–1492

    PubMed  CAS  Google Scholar 

  • Lassonde M, Sauerwein HC, Lepore F (1995) Extent and limits of callosal plasticity: presence of disconnection symptoms in callosal agenesis. Neuropsychologia 33:989–1007

    Article  PubMed  CAS  Google Scholar 

  • Laszlo JI, Baguley RA, Bairstow PJ (1970) Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav 2:261–271

    Google Scholar 

  • Lu X, Ashe J (2005) Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45:967–973

    Article  PubMed  CAS  Google Scholar 

  • Mayr U (1996) Spatial attention and implicit sequence learning: evidence for independent learning of spatial and nonspatial sequences. J Exp Psychol Learn Mem Cogn 22:350–364

    Article  PubMed  CAS  Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370

    Article  PubMed  CAS  Google Scholar 

  • Morton SM, Lang CE, Bastian AJ (2001) Inter- and intra-limb generalization of adaptation during catching. Exp Brain Res 141:438–445

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    Article  PubMed  CAS  Google Scholar 

  • Parlow SE, Kinsbourne M (1990) Asymmetrical transfer of braille acquisition between hands. Brain Lang 39:319–330

    Article  PubMed  CAS  Google Scholar 

  • Paz R, Boraud T, Natan C, Bergman H, Vaadia E (2003) Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat Neurosci 6:882–890

    Article  PubMed  CAS  Google Scholar 

  • Perez MA, Wise SP, Willingham DT, Cohen LG (2007) Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 27:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361

    Article  PubMed  CAS  Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 23:1–73

    Google Scholar 

  • Remillard G (2003) Pure perceptual-based sequence learning. J Exp Psychol Learn Mem Cogn 29:581–597

    Article  PubMed  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL (2005) Handedness, differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Schmidt SL, Oliveira RM, Rocha FR, Abreu-Villaca Y (2000) Influences of handedness and gender on the grooved pegboard test. Brain Cogn 44:445–454

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Bloomberg JJ, Stelmach GE (2001a) Patterns of transfer of adaptation among body segments. Behav Brain Res 122:145–157

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Bloomberg JJ, Stelmach GE (2001b) Context-dependent arm pointing adaptation. Behav Brain Res 119:155–166

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296:2043–2046

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165:114–124

    Article  PubMed  CAS  Google Scholar 

  • Sohn YH, Jung HY, Kaelin-Lang A, Hallett M (2003) Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp Brain Res 148:176–185

    PubMed  Google Scholar 

  • Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16:587–603

    PubMed  CAS  Google Scholar 

  • Teasdale N, Bard C, Fleury M, Young D, Proteau L (1993) Determining movement onsets from temporal series. J Mot Behav 25:97–106

    PubMed  CAS  Google Scholar 

  • Teixeira LA (2000) Timing and force components in bilateral transfer of learning. Brain Cogn 44:455–469

    Article  PubMed  CAS  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    Article  PubMed  CAS  Google Scholar 

  • Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophys 79:2149–2154

    CAS  Google Scholar 

  • Wang J, Sainburg RL (2003) Mechanisms underlying interlimb transfer of visuomotor rotations. Exp Brain Res 149:520–526

    PubMed  Google Scholar 

  • Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230

    Article  PubMed  Google Scholar 

  • Wigmore V, Tong C, Flanagan JR (2002) Visuomotor rotations of varying size and direction compete for a single internal model in working memory. J Exp Psychol Hum Percept Perform 28:447–457

    Article  PubMed  Google Scholar 

  • Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105:558–584

    Article  PubMed  CAS  Google Scholar 

  • Willingham DB (1999) Implicit motor sequence learning is not purely perceptual. Mem Cognit 27:561–572

    PubMed  CAS  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, London

    Google Scholar 

  • Witelson S (1985) The brain connection: the corpus callosum is larger in left-handers. Science 229:665–668

    Article  PubMed  CAS  Google Scholar 

  • Witelson S (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a UROP Summer Biomedical Research Fellowship (CC), NIH AG20883 (RS), and NIH AG24106 (RS). We thank our colleagues in the Neuromotor Behavior Laboratory and Daniel Goble for helpful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael Seidler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase, C., Seidler, R. Degree of handedness affects intermanual transfer of skill learning. Exp Brain Res 190, 317–328 (2008). https://doi.org/10.1007/s00221-008-1472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1472-z

Keywords

Navigation