Skip to main content
Log in

Delays in auditory-cued step initiation are related to increased volume of white matter hyperintensities in older adults

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

An increased volume of white matter hyperintensities (WMH) on MRI has been associated with mobility impairments in older adults. The objective of this preliminary study was to investigate the relationship between the volume of WMH and the delays in auditory-cued step initiation. Eight subjects aged 75–83 years participated. The WMH volume in the corticospinal tracts and anterior thalamic radiations were summed. Subjects performed an auditory-cued stepping task that included two simple reaction time (SRT) trials and three choice reaction time (CRT) trials. SRT trials required subjects to step as quickly as possible with the right foot from a symmetric standing position to a single target position in response to an auditory stimulus. For the CRT trials, subjects stepped as quickly as possible to one of two possible locations, depending on the auditory stimulus. The time from the stimulus onset to the reaction time of the anticipatory postural adjustment (APART) and liftoff (LO) of the right foot was computed for each stimulus. The mean APART and LO were greater for the CRT steps compared with the SRT steps to the same location. Increases in WMH were significantly associated with larger APART and LO during both SRT and CRT for both target locations. These data suggest that increased volume of WMH is associated with greater central processing time during voluntary step initiation, and highlight a possible mechanism that can help to explain how damage to white matter tracts affects mobility in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Pxarallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Arkadir D, Morris G, Vaadia E, Bergman H (2004) Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci 24:10047–10056

    Article  PubMed  CAS  Google Scholar 

  • Awad IA, Spetzler RF, Hodak JA, Awad CA, Carey R (1986) Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke 17:1084–1089

    PubMed  CAS  Google Scholar 

  • Baloh RW, Yue Q, Socotch TM, Jacobson KM (1995) White matter lesions and disequilibrium in older people. I. Case-control comparison. Arch Neurol 52:970–974

    PubMed  CAS  Google Scholar 

  • Baloh RW, Ying SH, Jacobson KM (2003) A longitudinal study of gait and balance dysfunction in normal older people. Arch Neurol 60:835–839

    Article  PubMed  Google Scholar 

  • Benson RR, Guttmann CR, Wei X, Warfield SK, Hall C, Schmidt JA, Kikinis R, Wolfson LI (2002) Older people with impaired mobility have specific loci of periventricular abnormality on MRI. [see comment]. Neurology 58:48–55

    PubMed  CAS  Google Scholar 

  • Briley DP, Wasay M, Sergent S, Thomas S (1997) Cerebral white matter changes (leukoaraiosis), stroke, and gait disturbance. J Am Geriatr Soc 45:1434–1438

    PubMed  CAS  Google Scholar 

  • Camicioli R, Moore MM, Sexton G, Howieson DB, Kaye JA (1999) Age-related brain changes associated with motor function in healthy older people. J Am Geriatr Soc 47:330–334

    PubMed  CAS  Google Scholar 

  • Cheruel F, Dormont JF, Amalric M, Schmied A, Farin D (1994) The role of putamen and pallidum in motor initiation in the cat. I. Timing of movement-related single-unit activity. Exp Brain Res 100:250–266

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL (1999) The gating functions of the basal ganglia in movement control. Prog Brain Res 121:261–276

    PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton ST, Vindras P, Grea H, Turner RS (2003) Basal ganglia network mediates the control of movement amplitude. Exp Brain Res 153:197–209

    Article  PubMed  CAS  Google Scholar 

  • Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Muller J, Tolosa E, Poewe W (1999) Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain 122:1349–1355

    Article  PubMed  Google Scholar 

  • Elble RJ, Cousins R, Leffler K, Hughes L (1996) Gait initiation by patients with lower-half parkinsonism. Brain 119:1705–1716

    Article  PubMed  Google Scholar 

  • Guo X, Skoog I, Matousek M, Larsson L, Palsson S, Sundh V, Steen B (2000) A population-based study on motor performance and white matter lesions in older women. J Am Geriatr Soc 48:967–970

    PubMed  CAS  Google Scholar 

  • Guttmann CR, Benson R, Warfield SK, Wei X, Anderson MC, Hall CB, Abu-Hasaballah K, Mugler JP 3rd, Wolfson L (2000) White matter abnormalities in mobility-impaired older persons. Neurology 54:1277–1283

    PubMed  CAS  Google Scholar 

  • Hennerici MG, Oster M, Cohen S, Schwartz A, Motsch L, Daffertshofer M (1994) Are gait disturbances and white matter degeneration early indicators of vascular dementia? Dementia 5:197–202

    Article  PubMed  CAS  Google Scholar 

  • Kerber KA, Enrietto JA, Jacobson KM, Baloh RW (1998) Disequilibrium in older people: a prospective study. Neurology 51:574–580

    PubMed  CAS  Google Scholar 

  • Kuo HK, Lipsitz LA (2004) Cerebral white matter changes and geriatric syndromes: is there a link? J Gerontol A Biol Sci Med Sci 59:818-826

    PubMed  Google Scholar 

  • Longstreth WT Jr, Arnold AM, Beauchamp NJ Jr, Manolio TA, Lefkowitz D, Jungreis C, Hirsch CH, O’Leary DH, Furberg CD (2005) Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 36:56–61

    Article  PubMed  Google Scholar 

  • Lord SR, Fitzpatrick RC (2001) Choice stepping reaction time: a composite measure of falls risk in older people. J Gerontol A-Biol Sci Med Sci 56:M627–M632

    PubMed  CAS  Google Scholar 

  • Luchies CW, Schiffman J, Richards LG, Thompson MR, Bazuin D, DeYoung AJ (2002) Effects of age, step direction, and reaction condition on the ability to step quickly. J Gerontol A Biol Sci Med Sci 57:M246–M249

    PubMed  Google Scholar 

  • Manolio TA, Kronmal RA, Burke GL, Poirier V, O’Leary DH, Gardin JM, Fried LP, Steinberg EP, Bryan RN (1994) Magnetic resonance abnormalities and cardiovascular disease in older adults. The Cardiovascular Health Study. Stroke 25:318–327

    PubMed  CAS  Google Scholar 

  • Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. [see comment]. J Comp Neurol 462:144–152

    Article  PubMed  Google Scholar 

  • Masdeu JC, Wolfson L, Lantos G, Tobin JN, Grober E, Whipple R, Amerman P (1989) Brain white-matter changes in the elderly prone to falling. [see comment]. Arch Neurol 46:1292–1296

    PubMed  CAS  Google Scholar 

  • Medell JL, Alexander NB (2000) A clinical measure of maximal and rapid stepping in older women. [see comment]. J Gerontol A Biol Sci Med Sci 55:M429–M433

    PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2001) Revised neuroanatomy of frontal-subcortical circuits. In: Lichter DG, Cummings JL (eds) Frontal-subcortical circuits in pschiatric and neurological disorders. The Guilford Press, New York, pp 44–58

    Google Scholar 

  • Onen F, Feugeas MC, Baron G, De Marco G, Godon-Hardy S, Peretti II, Ravaud P, Legrain S, Moretti JL, Claeys ES (2004) Leukoaraiosis and mobility decline: a high resolution magnetic resonance imaging study in older people with mild cognitive impairment. Neurosci Lett 355:185–188

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  PubMed  CAS  Google Scholar 

  • Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659

    PubMed  CAS  Google Scholar 

  • Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646 discussion 1647

    PubMed  CAS  Google Scholar 

  • Patla AE, Frank JS, Winter DA, Rietdyk S, Prentice S, Prasad S (1993) Age-related changes in balance control system: initiation of stepping. Clin Biomech 8:179–184

    Article  Google Scholar 

  • Peters A (2002) Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci Biobehav Rev 26:733–741

    Article  PubMed  Google Scholar 

  • Peters A, Sethares C (2003) Is there remyelination during aging of the primate central nervous system? J Comp Neurol 460:238–254

    Article  PubMed  Google Scholar 

  • Pugh KG, Lipsitz LA (2002) The microvascular frontal-subcortical syndrome of aging. Neurobiol Aging 23:421-431

    Article  PubMed  Google Scholar 

  • Rogers MW, Hedman LD, Johnson ME, Martinez KM, Mille ML (2003) Triggering of protective stepping for the control of human balance: age and contextual dependence. Cognit Brain Res 16:192–198

    Article  Google Scholar 

  • Roman GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1:426–436

    Article  PubMed  Google Scholar 

  • Rosano C, Kuller LH, Chung H, Arnold AM, Longstreth WT Jr, Newman AB (2005a) Subclinical brain magnetic resonance imaging abnormalities predict physical functional decline in high-functioning older adults. J Am Geriatr Soc 53:649–654

    Article  PubMed  Google Scholar 

  • Rosano C, Simonsick EM, Harris TB, Kritchevsky SB, Brach J, Visser M, Yaffe K, Newman AB (2005b) Association between physical and cognitive function in healthy elderly: the health, aging and body composition study. Neuroepidemiology 24:8–14

    Article  PubMed  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654

    Article  PubMed  Google Scholar 

  • Tell GS, Lefkowitz DS, Diehr P, Elster AD (1998) Relationship between balance and abnormalities in cerebral magnetic resonance imaging in older adults. Arch Neurol 55:73–79

    Article  PubMed  CAS  Google Scholar 

  • Thompson PD, Marsden CD (1987) Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord 2:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tomimoto H, Ihara M, Wakita H, Ohtani R, Lin JX, Akiguchi I, Kinoshita M, Shibasaki H (2003) Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol (Berl) 106:527–534

    Article  CAS  Google Scholar 

  • Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST (2003) Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90:3958–3966

    Article  PubMed  Google Scholar 

  • Ueda Y, Kimura M (2003) Encoding of direction and combination of movements by primate putamen neurons. Eur J Neurosci 18:980–994

    Article  PubMed  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  • Whitman GT, DiPatre PL, Lopez IA, Liu F, Noori NE, Vinters HV, Baloh RW (1999) Neuropathology in older people with disequilibrium of unknown cause. [see comment]. Neurology 53:375–382

    PubMed  CAS  Google Scholar 

  • Whitman GT, Tang Y, Lin A, Baloh RW, Tang T (2001) A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. [erratum appears in Neurology 2001 Nov 27;57(10):1942 Note: Tang T [corrected to Tang Y]]. Neurology 57: 990–994

  • Wolfson L (2001) Gait and balance dysfunction: a model of the interaction of age and disease. Neuroscientist 7:178–183

    Article  PubMed  CAS  Google Scholar 

  • Wolfson L, Wei X, Hall CB, Panzer V, Wakefield D, Benson RR, Schmidt JA, Warfield SK, Guttmann CR (2005) Accrual of MRI white matter abnormalities in elderly with normal and impaired mobility. [see comment]. J Neurol Sci 232:23–27

    Article  PubMed  Google Scholar 

  • Wu M, Rosano C, Butters M, Whyte E, Nable M, Crooks R, Meltzer CC, Reynolds CF 3rd, Aizenstein HJ (2006) A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res 148:133–142

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by funding from the National Institutes of Health (P30 AG024827, P30 DC005205) and the Eye and Ear Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Sparto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparto, P.J., Aizenstein, H.J., VanSwearingen, J.M. et al. Delays in auditory-cued step initiation are related to increased volume of white matter hyperintensities in older adults. Exp Brain Res 188, 633–640 (2008). https://doi.org/10.1007/s00221-008-1443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1443-4

Keywords

Navigation