Skip to main content
Log in

Foveal and extra-foveal orientation discrimination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Performance can often be made equal across the visual field by scaling peripherally presented stimuli according to F = 1 + E/E 2 where E 2 is the eccentricity at which stimulus size must double to maintain foveal performance levels. Sally and Gurnsey (Vision Res 43:1375–1385, 2003 and Vision Res 44:2719–2727, 2004) have previously shown that estimates of E 2 for orientation discrimination are significantly larger (i.e., less spatial scaling is required) at stimulus contrasts near detection threshold than at contrasts well above detection threshold. To examine the nature of this effect parametrically we measured orientation discrimination thresholds at 0° and 10° eccentricity for three levels of Michelson contrast (3, 12 and 48%) and three stimulus length-to-width aspect ratios (36.4, 9.1 and 2.3) for a range of line sizes (0.19°–36° visual angle). On average, E 2 values decreased as stimulus contrast decreased, consistent with the previous results of Sally and Gurnsey (Vision Res 43:1375–1385, 2003 and Vision Res 44:2719–2727, 2004). It is proposed that contrast reductions have a proportionally larger effect on small orientation-selective units than large ones and thus produce a greater rightward shift of acuity functions (orientation threshold vs. size) at the fovea than in the periphery. This explains why less spatial scaling is required to equate foveal and peripheral acuity functions at low contrasts than at high contrasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In general, orientation discrimination thresholds decrease with line length. For sine wave gratings, however, orientation discrimination thresholds increase with wavelength (Burr and Wijesundra 1991). Thus, variations in local scale seem to have different effects for broadband stimuli (lines segments) and narrowband stimuli (gratings).

  2. Summation area can be thought of in terms of receptive field size or, perhaps more plausibly, the area over which the responses of many subunits can be integrated (Heeley et al. 1997; Beaudot and Mullen 2006).

References

  • Andrews DP (1967) Perception of contour orientation in the central foveal. Part 1: short lines. Vision Res 7:975–997

    Article  PubMed  CAS  Google Scholar 

  • Andriessen JJ, Bouma H (1970) Just noticeable differences in slant of test lines as a function of retinal eccentricity. IPO Ann Prog Rep 5

  • Barlow HB (1958) Temporal and spatial summation in human vision at different background intensities. J Physiol 141:337–350

    PubMed  CAS  Google Scholar 

  • Beaudot WH, Mullen KT (2006) Orientation discrimination in human vision: psychophysics and modeling. Vision Res 46:26–46

    Article  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:443–446

    Google Scholar 

  • Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  • Burr DC, Wijesundra S (1991) Orientation discrimination depends on spatial frequency. Vision Res 31:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Cornsweet TN, Yellott JI Jr (1985) Intensity-dependent spatial summation. J Opt Soc Am A 2:1769–1786

    PubMed  CAS  Google Scholar 

  • Cowey A, Rolls E T (1974) Human cortical magnification factor and its relation to visual acuity. Exp Brain Res 21:447–454

    Article  PubMed  CAS  Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    PubMed  CAS  Google Scholar 

  • Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44:213–228

    Article  PubMed  CAS  Google Scholar 

  • Glezer VD (1965) The receptive fields of the retina. Vision Res 5:497–525

    Article  PubMed  CAS  Google Scholar 

  • Graham NVS (1989) Neurophysiology and psychophysics. In: Visual pattern analyzers. Oxford University Press, New York, pp 3–34

  • Gurnsey R, Poirier FJ, Bluett P, Leibov L (2006) Identification of 3D shape from texture and motion across the visual field. J Vis 6:543:553

    Article  PubMed  Google Scholar 

  • Heeley DW, Buchanan-Smith HM (1998) The influence of stimulus shape on orientation acuity. Exp Brain Res 120:217–222

    Article  PubMed  CAS  Google Scholar 

  • Heeley DW, Buchanan-Smith HM, Cromwell JA, Wright JS (1997) The oblique effect in orientation acuity. Vision Res 37:235–242

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 28:229–289

    Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–305

    Article  PubMed  CAS  Google Scholar 

  • Johnston A (1987) Spatial scaling of central and peripheral contrast sensitivity functions. J Opt Soc Am A 4:1583–1593

    PubMed  CAS  Google Scholar 

  • Johnston A, Wright MJ (1986) Matching velocity in central and peripheral vision. Vision Res 26:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96:12073–12078

    Article  PubMed  CAS  Google Scholar 

  • Klein SA, Levi DM (1987) Position sense of the peripheral retina. J Opt Soc Am A 4:1543–1553

    PubMed  CAS  Google Scholar 

  • Latham K, Whitaker D, Wild JM, Elliot DB (1993) Magnification perimetry. Invest Ophthalmol Vis Sci 34:1691–1701

    PubMed  CAS  Google Scholar 

  • Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vision Res 25:963–977

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä P, Whitaker D, Rovamo J (1993) Modelling of orientation discrimination across the visual field. Vision Res 33:723–730

    Article  PubMed  Google Scholar 

  • Melmoth DR, Kukkonen HT, Mäkelä P, Rovamo JM (2000a) Scaling extrafoveal detection of distortion in a face and grating. Perception 29:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Melmoth DR, Kukkonen HT, Mäkelä P, Rovamo JM (2000b) The effect of contrast- and size-scaling on face perception in foveal and extrafoveal vision. Invest Ophthalmol Vis Sci 41:2811–2819

    PubMed  CAS  Google Scholar 

  • Orban GA, Vandenbussche E, Vogels R (1984) Human orientation discrimination tested with long stimuli. Vision Res 24:121–128

    Article  PubMed  CAS  Google Scholar 

  • Orban GA, Vandenbussche E, Sprague JM, De Weerd P (1990) Orientation discrimination in the cat: a distributed function. Proc Natl Acad Sci USA 87:1134–1138

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG (1987) The ideal psychometric procedure. Invest Ophthalmol Vis Sci Suppl 28:366

    Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    PubMed  CAS  Google Scholar 

  • Pelli DG, Zhang L (1991) Accurate control of contrast on microcomputer displays. Vision Res 31:1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Poirier FJAM, Gurnsey R (2002) Two eccentricity dependent limitations on subjective contour discrimination. Vision Res 42:227–238

    Article  PubMed  Google Scholar 

  • Poirier FJAM, Gurnsey R (2005) Non-monotonic changes in performance with eccentricity modeled by multiple eccentricity-dependent limitations. Vision Res 45:2436–2448

    Article  PubMed  Google Scholar 

  • Regan D, Beverley KI (1985) Postadaptation orientation discrimination. J Opt Soc Am A 2:147–155

    PubMed  CAS  Google Scholar 

  • Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    Article  PubMed  CAS  Google Scholar 

  • Rovamo J, Virsu V, Näsänen R (1978) Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271:54–56

    Article  PubMed  CAS  Google Scholar 

  • Saarinen J, Rovamo J, Virsu V (1989). Analysis of spatial structure in eccentric vision. Invest Ophthalmol Vis Sci 30:293–296

    PubMed  CAS  Google Scholar 

  • Sally SL, Gurnsey R (2003) Orientation discrimination in foveal and extra-foveal vision: effects of stimulus bandwidth and contrast. Vision Res 43:1375–1385

    Article  PubMed  Google Scholar 

  • Sally SL, Gurnsey R (2004) Orientation discrimination across the visual field: size scaling estimates at near-threshold levels of contrast. Vision Res 44:2719–2727

    Article  PubMed  Google Scholar 

  • Sally SL, Poirier FJAM, Gurnsey R (2005) Orientation discrimination across the visual field: size estimates near contrast threshold. Percept Psychophys 67:638–647

    PubMed  Google Scholar 

  • Sceniak MP, Ringach DL, Hawken MJ, Shapley RM (1999) Contrast’s effect on spatial summation by macaque V1 neurons. Nat Neurosci 2:733–739

    Article  PubMed  CAS  Google Scholar 

  • Scobey RP (1982) Human visual orientation discrimination. J Neurophysiol 48:18–26

    PubMed  CAS  Google Scholar 

  • Strasburger H, Harvey LO Jr, Rentschler I (1991) Contrast thresholds for identification of numeric characters in direct and eccentric view. Percept Psychophys 49:495–508

    PubMed  CAS  Google Scholar 

  • Strasburger H, Rentschler I, Harvey LO Jr (1994) Cortical magnification theory fails to predict visual recognition. Eur J Neurosci 6:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Talbot SA, Marshall WH (1941) Physiological studies on neural mechanisms of visual localization and discrimination. Am J Ophthalmol 24:1255–1263

    Google Scholar 

  • Thibos LN, Still DL, Bradley A (1996) Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Res 36:249–258

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448

    Article  PubMed  Google Scholar 

  • Vandenbussche E, Vogels R, Orban GA (1986) Human orientation discrimination: changes with eccentricity in normal and amblyopic vision. Invest Ophthalmol Vis Sci 27:237–245

    PubMed  CAS  Google Scholar 

  • Watson AB (1987) Estimation of local spatial scale. J Opt Soc Am A 4:1579–1582

    PubMed  CAS  Google Scholar 

  • Watson AB, Robson JG (1981) Discrimination at threshold: labelled detectors in human vision. Vision Res 21:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33:113–20

    PubMed  CAS  Google Scholar 

  • Westheimer G (1982) The spatial grain of the perifoveal visual field. Vision Res 22:157–162

    Article  PubMed  CAS  Google Scholar 

  • Westheimer G, Shimamura K, McKee SP (1976) Interference with line-orientation sensitivity. J Opt Soc Am 66:332–338

    PubMed  CAS  Google Scholar 

  • Whitaker D, Mäkelä P, Rovamo J, Latham K (1992) The influence of eccentricity on position and movement acuities as revealed by spatial scaling. Vision Res 32:1913–1930

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR (1986) Response of spatial mechanisms can explain vernier acuity. Vision Res 26:453–469

    Article  PubMed  CAS  Google Scholar 

  • Wright MJ (1987) Spatiotemporal properties of grating motion detection in the center and periphery of the visual field. J Opt Soc Am A 4:1627–1633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC Research Grants to Rick Gurnsey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L. Sally.

Additional information

Portions of this paper were presented at the Annual meeting of the Vision Sciences Society, 2006, Sarasota, FL, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sally, S.L., Gurnsey, R. Foveal and extra-foveal orientation discrimination. Exp Brain Res 183, 351–360 (2007). https://doi.org/10.1007/s00221-007-1048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1048-3

Keywords

Navigation