Skip to main content

Advertisement

Log in

Tolerogenic effect of fiber tract injury: reduced EAE severity following entorhinal cortex lesion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Despite transient, myelin-directed adaptive immune responses in regions of fiber tract degeneration, none of the current models of fiber tract injuries evokes disseminated demyelination, implying effective mechanisms maintaining or re-establishing immune tolerance. In fact, we have recently detected CD95L upregulation accompanied by apoptosis of leukocytes in zones of axonal degeneration induced by entorhinal cortex lesion (ECL), a model of layer-specific axonal degeneration. Moreover, infiltrating monocytes readily transformed into ramified microglia exhibiting a phenotype of immature (CD86+/CD80−) antigen-presenting cells. We now report the appearance of the axonal antigen neurofilament-light along with increased T cell apoptosis and enhanced expression of the pro-apoptotic gene Bad in cervical lymph nodes after ECL. In order to test the functional significance of such local and systemic depletory/regulatory mechanisms on subsequent immunity to central nervous system antigens, experimental autoimmune encephalomyelitis was induced by proteolipid protein immunization 30 days after ECL. In three independent experiments, we found significantly diminished disease scores and infiltrates in lesioned compared to sham-operated SJL mice. This is consistent with a previous meta-statistical analysis (Goodin et al. in Neurology 52:1737–1745, 1999) rejecting the O-hypothesis that brain trauma causes or exacerbates multiple sclerosis. Conversely, brain injuries may involve long-term tolerogenic effects towards brain antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ECL:

Entorhinal cortex lesion

NF-L:

Neurofilament-light

PLP:

Proteolipid protein

7-AAD:

7-Amino-actinomycin D

CLN:

Cervical lymph nodes

References

  • Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930

    PubMed  CAS  Google Scholar 

  • Bechmann I (2005) Failed central nervous system regeneration: a downside of immune privilege? Neuromolecular Med 7:217–228

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Nitsch R (1997) Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Glia 20:145–154

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Nitsch R (2000) Involvement of non-neuronal cells in entorhinal–hippocampal reorganization following lesions. Ann NY Acad Sci 911:192–206

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Nitsch R (2001) Plasticity following lesion: help and harm from the immune system. Restor Neurol Neurosci 19:189–198

    PubMed  CAS  Google Scholar 

  • Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 27:62–74

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Lossau S, Steiner B, Mor G, Gimsa U, Nitsch R (2000) Reactive astrocytes upregulate Fas (CD95) and Fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. Glia 32:25–41

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Peter S, Beyer M, Gimsa U, Nitsch R (2001) Presence of B7-2 (CD86) and lack of B7-1 CD(80) on myelin phagocytosing MHC-II-positive rat microglia is associated with nondestructive immunity in vivo. FASEB J 15:1086–1088

    PubMed  CAS  Google Scholar 

  • Bechmann I, Steiner B, Gimsa U, Mor G, Wolf S, Beyer M, Nitsch R, Zipp F (2002) Astrocyte-induced T cell elimination is CD95 ligand dependent. J Neuroimmunol 132: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simburger E, Naftolin F, Dirnagl U, Nitsch R, Priller J (2005) Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 19:647–649

    PubMed  CAS  Google Scholar 

  • Brabb T, von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J (2000) In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med 192:871–880

    Article  PubMed  CAS  Google Scholar 

  • Brandt C, Yang J, Schmitt-Knosalla I, Siepert A, Hammer MH, Vogt K, Sawitzki B Lehmann M, Volk HD, Ritter T (2005) Allo-specific T-cells encoding for viral IL-10 exert strong immunomodulatory effects in vitro but fail to prevent graft rejection. Am J Transplant 5:268–281

    Article  PubMed  CAS  Google Scholar 

  • Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman CG, Steinman L (1993) Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365:642–644

    Article  PubMed  CAS  Google Scholar 

  • Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 81:435–440

    Article  PubMed  CAS  Google Scholar 

  • Buss A, Schwab ME (2003) Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord. Glia 42:424–432

    Article  PubMed  Google Scholar 

  • Butovsky O, Hauben E, Schwartz M (2001) Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. FASEB J 15:1065–1067

    PubMed  CAS  Google Scholar 

  • Carson MJ (2002) Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 40:218–231

    Article  PubMed  Google Scholar 

  • Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1998) Mature microglia resemble immature antigen-presenting cells. Glia 22:72–85

    Article  PubMed  CAS  Google Scholar 

  • Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1999) Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am J Pathol 154:481–494

    PubMed  CAS  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  PubMed  CAS  Google Scholar 

  • Charcot JM (1879) Lectures on the diseases of the nervous system. New Sydenham Society, London, pp 157–222

  • Chaudhuri A, Behan PO (2001) Acute cervical hyperextension-hyperflexion injury may precipitate and/or exacerbate symptomatic multiple sclerosis. Eur J Neurol 8:659–664

    Article  PubMed  CAS  Google Scholar 

  • Constantin G, Brocke S, Izikson A, Laudanna C, Butcher EC (1998) Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur J Immunol 28:3523–3529

    Article  PubMed  CAS  Google Scholar 

  • Cook SD (2000) Trauma does not precipitate multiple sclerosis. Arch Neurol 57:1077–1078

    Article  PubMed  CAS  Google Scholar 

  • Corcoran M (2002) An unhappy coincidence between multiple sclerosis and trauma? Lancet 359:726

    Article  PubMed  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276

    PubMed  CAS  Google Scholar 

  • de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, ‘t Hart BA, Laman JD (2002a) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    Google Scholar 

  • de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, ‘t Hart BA, Laman JD (2002b) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    Google Scholar 

  • Deller T, Haas CA, Frotscher M (2001) Sprouting in the hippocampus after entorhinal cortex lesion is layer-specific but not translaminar: which molecules may be involved? Restor Neurol Neurosci 19:159–167

    PubMed  CAS  Google Scholar 

  • Eyupoglu IY, Bechmann I, Nitsch R (2003) Modification of microglia function protects from lesion-induced neuronal alterations and promotes sprouting in the hippocampus. FASEB J 17:1110–1111

    PubMed  CAS  Google Scholar 

  • Fabriek BO, Zwemmer JN, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, Castelijns JA (2005) In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultraso und-guided fine-needle aspiration cytology. J Neuroimmunol 161:190–194

    Article  PubMed  CAS  Google Scholar 

  • Fee D, Crumbaugh A, Jacques T, Herdrich B, Sewell D, Auerbach D, Piaskowski S, Hart MN, Sandor M, Fabry Z (2003) Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J Neuroimmunol 136:54–66

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Heimrich B, Deller T (1997) Sprouting in the hippocampus is layer-specific. Trends Neurosci 20:218–223

    Article  PubMed  CAS  Google Scholar 

  • Ghadirian P, Dadgostar B, Azani R, Maisonneuve P (2001) A case-control study of the association between socio-demographic, lifestyle and medical history factors and multiple sclerosis. Can J Public Health 92:281–285

    PubMed  CAS  Google Scholar 

  • Gimsa U, Peter SV, Lehmann K, Bechmann I, Nitsch R (2000) Axonal damage induced by invading T cells in organotypic central nervous system tissue in vitro: involvement of microglial cells. Brain Pathol 10:365–377

    Article  PubMed  CAS  Google Scholar 

  • Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I (2006) T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol. 80:797–801

    Article  PubMed  CAS  Google Scholar 

  • Goodin DS, Ebers GC, Johnson KP, Rodriguez M, Sibley WA, Wolinsky JS (1999) The relationship of MS to physical trauma and psychological stress: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 52:1737–1745

    PubMed  CAS  Google Scholar 

  • Hailer NP, Heppner FL, Haas D, Nitsch R (1998) Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol 8:459–474

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  • Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107:806–812

    Article  PubMed  CAS  Google Scholar 

  • Hauben E, Schwartz M (2003) Therapeutic vaccination for spinal cord injury: helping the body to cure itself. Trends Pharmacol Sci 24:7–12

    Article  PubMed  CAS  Google Scholar 

  • Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355:286–287

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg DL, Moalem G, He J, Mor F, Cohen IR, Schwartz M (1998) Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J Neuroimmunol 89:88–96

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter HH, Sewell DL, Liu F, Sandor M, Forsthuber T, Lehmann PV, Fabry Z (2003) Autoreactive T cells promote post-traumatic healing in the central nervous system. J Neuroimmunol 134:25–34

    Article  PubMed  CAS  Google Scholar 

  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107:161–166

    Article  PubMed  CAS  Google Scholar 

  • Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, Lee S, Whitacre CC, Popovich PG (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22:2690–2700

    PubMed  CAS  Google Scholar 

  • Jones TB, Ankeny DP, Guan Z, McGaughy V, Fisher LC, Basso DM, Popovich PG (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 24:3752–3761

    Article  PubMed  CAS  Google Scholar 

  • Kamradt T, Mitchison NA (2001) Tolerance and autoimmunity. N Engl J Med 344:655–664

    Article  PubMed  CAS  Google Scholar 

  • Karman J, Ling C, Sandor M, Fabry Z (2004) Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173:2353–2361

    PubMed  CAS  Google Scholar 

  • Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB (1997) Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 17: 7040–7046

    PubMed  CAS  Google Scholar 

  • Kil K, Zang YC, Yang D, Markowski J, Fuoco GS, Vendetti GC, Rivera VM, Zhang JZ (1999) T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J Neuroimmunol 98:201–207

    Article  PubMed  CAS  Google Scholar 

  • Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M (2001) Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 21: 4564–4571

    PubMed  CAS  Google Scholar 

  • Kovac AD, Kwidzinski E, Heimrich B, Bittigau P, Deller T, Nitsch R, Bechmann I (2004) Entorhinal cortex lesion in the mouse induces transsynaptic death of perforant path target neurons. Brain Pathol 14:249–257

    Article  PubMed  Google Scholar 

  • Kurland LT (1994) Trauma and multiple sclerosis. Ann Neurol 36 (Suppl): 33–37

    Article  Google Scholar 

  • Kwidzinski E, Mutlu LK, Kovac AD, Bunse J, Goldmann J, Mahlo J, Aktas O, Zipp F, Kamradt T, Nitsch R, Bechmann I (2003) Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. J Neural Transm Suppl 65:29–49

    PubMed  Google Scholar 

  • Lynch G, Matthews DA, Mosko S, Parks T, Cotman C (1972) Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res 42: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Martinelli V (2000) Trauma, stress and multiple sclerosis. Neurol Sci 21:849–852

    Article  Google Scholar 

  • Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345

    Article  PubMed  CAS  Google Scholar 

  • Mutlu LK, Woiciechowsky C, Bechmann I (2004) Inflammatory response after neurosurgery. Best Pract Res Clin Anaesthesiol 18:407–424

    Article  PubMed  CAS  Google Scholar 

  • Olivares-Villagomez D, Wang Y, Lafaille JJ (1998) Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188:1883–1894

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Diener P, Ljungdahl A, Hojeberg B, van der Meide PH, Kristensson K (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13:117–126

    PubMed  CAS  Google Scholar 

  • Popovich PG, Stokes BT, Whitacre CC (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45:349–363

    Article  PubMed  CAS  Google Scholar 

  • Poser CM (1994a) The role of trauma in the pathogenesis of multiple sclerosis: a review. Clin Neurol Neurosurg 96:103–110

    Article  CAS  Google Scholar 

  • Poser CM (1994b) Physical trauma and multiple sclerosis. Neurology 44:1360–1362

    CAS  Google Scholar 

  • Poser CM (2000) Trauma to the central nervous system may result in formation or enlargement of multiple sclerosis plaques. Arch Neurol 57:1074–1077

    Article  PubMed  CAS  Google Scholar 

  • Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  PubMed  CAS  Google Scholar 

  • Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18:5804–5816

    PubMed  CAS  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  PubMed  CAS  Google Scholar 

  • Roncarolo MG, Levings MK, Traversari C (2001) Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 193:F5–F9

    Article  PubMed  CAS  Google Scholar 

  • Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22(23):10291–10301

    PubMed  CAS  Google Scholar 

  • Sawitzki B, Amersi F, Ritter T, Fisser M, Shen XD, Ke B, Busuttil R, Volk HD, Kupiec-Weglinski JW (2002) Upregulation of Bag-1 by ex vivo gene transfer protects rat livers from ischemia/reperfusion injury. Hum Gene Ther 13:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Schluesener HJ, Wekerle H (1984) In vitro selection of permanent T lymphocyte lines with receptors for myelin basic protein (MBP). Prog Clin Biol Res 146:285–290

    PubMed  CAS  Google Scholar 

  • Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208

    Article  PubMed  CAS  Google Scholar 

  • Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci 98: 3398–3403

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Cohen IR (2000) Autoimmunity can benefit self-maintenance. Immunol Today 21:265–268

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H (2003) Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 26:297–302

    Article  PubMed  CAS  Google Scholar 

  • Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VM, Jones KJ (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 19:RC7

    PubMed  CAS  Google Scholar 

  • Trajkovic V, Vuckovic O, Stosic-Grujicic S, Miljkovic D, Popadic D, Markovic M, Bumbasirevic V, Backovic A, Cvetkovic I, Harhaji L, Ramic Z, Mostarica Stojkovic M (2004) Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 47:168–179

    Article  PubMed  Google Scholar 

  • Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–3775

    PubMed  CAS  Google Scholar 

  • Wenkel H, Streilein JW, Young MJ (2000) Systemic immune deviation in the brain that does not depend on the integrity of the blood–brain barrier. J Immunol 164:5125–5131

    PubMed  CAS  Google Scholar 

  • Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schoning B, Glockner F, Lanksch WR, Volk HD, Docke WD (1998) Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 4:808–813

    Article  PubMed  CAS  Google Scholar 

  • Woiciechowsky C, Schoning B, Lanksch WR, Volk HD, Docke WD (1999) Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 77:769–780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sabine Winkler for technical assistance, Kimberly Rosegger for carefully reading this manuscript and Markus Hammer for helpful discussions. This study was supported by the Microglia-Program of the DFG (Be 2272/1–2) and the SFB 507 (project A16; I.B.). U.G. was supported by the Gemeinnützige Hertie-Stiftung (grant 1.01.1/03/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Brandt.

Additional information

Leman Mutlu, Christine Brandt, Jon D. Laman, and Ingo Bechmann have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutlu, L., Brandt, C., Kwidzinski, E. et al. Tolerogenic effect of fiber tract injury: reduced EAE severity following entorhinal cortex lesion. Exp Brain Res 178, 542–553 (2007). https://doi.org/10.1007/s00221-006-0758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0758-2

Keywords

Navigation