Skip to main content
Log in

NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Nitric oxide is involved in memory and motor learning. We investigated possible influences of exercise on spatial memory and NADPH-diaphorase (NADPH-d) histochemical activity in the hippocampus, striatum and cerebellum. Fifteen albino Swiss mice between the 22nd and 55th post-natal days were exercised in the following modalities: voluntary (V), acrobatic (A), acrobatic/voluntary (AV) and forced (F) and compared to inactive group (I). After the exercise period, all subjects were tested in the water maze for 3 days. Animal brains were processed for NADPH-d histochemistry. Densitometry of the neuropil of the hippocampus, striatum and cerebellum and morphometric analysis of NADPHd+ type I neurons of the striatum were done. Exercise groups presented higher levels of NADPH-d activity in the molecular and polymorphic layers of dentate gyrus and lacunosum molecular layer of CA1. The A group presented higher NADPH-d activity in the cerebellar granular layer than all other groups. Branching points and dendritic segment densities of NADPH-d type I neurons were higher in V, A and AV than in F and I groups. Exercise groups revealed best performances on water maze tests. Thus, different modalities of exercise increases in different proportions for the nitrergic activity in the hippocampus, striatum and cerebellum, and these changes seem to be beneficial to spatial memory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson BJ, Alcantara AA, Greenough WT (1996) Motor-skill learning: changes in synaptic organization of the rat cerebellar cortex. Neurobiol Learn Mem 66:221–229

    Article  PubMed  CAS  Google Scholar 

  • Arida RM, Scorza CA, da Silva AV, Scorza FA, Cavalheiro EA (2004) Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett 364:135–138

    Article  PubMed  CAS  Google Scholar 

  • Arnaiz SL, D’Amico G, Paglia N, Arismendi M, Basso N, del Rosario Lores Arnaiz M (2004) Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition (Review). Mol Aspects Med 25:91–101

    Article  PubMed  CAS  Google Scholar 

  • Ayres M (2005) BioEstat 3.0. Sociedade Civil Mamirauá/MCT/Imprensa Oficial do Estado do Pará. Belém, Pará, Brazil

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, de Vente J, Prickaerts J, Honig W, Markerink-van Ittersum M, Steinbusch H (1999) Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats. Eur J Neurosci 11:223–232

    Article  PubMed  CAS  Google Scholar 

  • Bon CL, Garthwaite J (2003) On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 23:1941–1948

    PubMed  CAS  Google Scholar 

  • Borba JM, Araujo MS, Picanço-Diniz CW, Manhaes-de-Castro R, Guedes RC (2000) Permanent and transitory morphometric changes of NADPH-diaphorase-containing neurons in the rat visual cortex after early malnutrition. Brain Res Bull 53:193–201

    Article  PubMed  CAS  Google Scholar 

  • Boxall AR, Garthwaite J (1996) Long-term depression in rat cerebellum requires both NO synthase and NO-sensitive guanylyl cyclase. Eur J Neurosci 8(10):2209–2212

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    Article  PubMed  CAS  Google Scholar 

  • Burette A, Zabel U, Weinberg RJ, Schmidt HH, Valtschanoff JG (2002) Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J Neurosci 22:8961–8970

    PubMed  CAS  Google Scholar 

  • Buwalda B, Nyakas C, Guast J, Luiten PG, Schmidt HH, (1995) Aldehyde fixation differentially affects distribution of diaphorase activity but not of nitric oxide synthase immunoreactivity in rat brain. Brain Res Bull 38:467–473

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Bernardi G (1999) Glutamate-triggered events inducing corticostriatal long-term depression. J Neurosci 19:6102–6110

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration (Review). Prog Neurobiol 61:231–265

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Gubellini P, Bernardi G, Calabresi P (1999) Permissive role of interneurons in corticostriatal synaptic plasticity (Review). Brain Res Brain Res Rev 31:1–5

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Chen QS, Lei JL, Wang SL (1998) Physical training modifies the age-related decrease of GAP-43 and synaptophysin in the hippocampal formation in C57BL/6J mouse. Brain Res 806:238–245

    Article  PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21:1679–1688

    Article  PubMed  Google Scholar 

  • Comery TA, Stamoudis CX, Irwin SA, Greenough WT (1996) Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiol Learn Mem 66:93–96

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Audinat E, Daniel H, Hemart N, Jaillard D, Rossier J, Lambolez B (1994) Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacology 33:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E (2005) Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res 148:69–80

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Hemart N, Jaillard D, Crepel F (1993) Long-term depression requires nitric oxide and guanosine 3′:5′ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 5:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD (Review). Trends Neurosci 21:401–407

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, SnyderSH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, Phillis JW, Clark JC, Diaz FG (2004) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583–591

    Article  PubMed  CAS  Google Scholar 

  • Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    Article  PubMed  CAS  Google Scholar 

  • Encinas JM, Fernandez AP, Salas E, Castro-Blanco S, Munoz P, Rodrigo J, Serrano J (2004) Nitric oxide synthase and NADPH-diaphorase after acute hypobaric hypoxia in the rat caudate putamen. Exp Neurol 186:33–45

    Article  PubMed  CAS  Google Scholar 

  • Eyre MD, Richter-Levin G, Avital A, Stewart MG (2003) Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 17:1973–1980

    Article  PubMed  Google Scholar 

  • Faber-Zuschratter H, Seidenbecher T, Reymann K, Wolf G (1996) Ultrastructural distribution of NADPH-diaphorase in the normal hippocampus and after long-term potentiation. J Neural Transm 103:807–817

    Article  PubMed  CAS  Google Scholar 

  • Federmeier KD, Kleim JA, Greenough WT (2002) Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett 332:180–184

    Article  PubMed  CAS  Google Scholar 

  • Ferri P, Biagiotti E, Ambrogini P, Santi S, Del Grande P, Ninfali P (2005) NADPH-consuming enzymes correlate with glucose-6-phosphate dehydrogenase in Purkinje cells: an immunohistochemical and enzyme histochemical study of the rat cerebellar cortex. Neurosci Res 51:185–197

    Article  PubMed  CAS  Google Scholar 

  • Frick KM, Fernandez SM (2003) Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 24:615–626

    Article  PubMed  CAS  Google Scholar 

  • Garifoli A, Cardile V, Maci T, Perciavalle V (2003) Exercise increases cytochrome oxidase activity in specific cerebellar areas of the rat. Arch Ital Biol 14:181–187

    Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    PubMed  CAS  Google Scholar 

  • Hartell NA (1994) cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuroreport 5:833–836

    Article  PubMed  CAS  Google Scholar 

  • Hartell NA (2001) Receptors, second messengers and protein kinases required for heterosynaptic cerebellar long-term depression. Neuropharmacology 40:148–161

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Turner RW (1994) Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol 346:499–516

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RD, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus (Review). Prog Brain Res 118:155–172

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2002) The molecular organization of cerebellar long-term depression (Review). Nat Rev Neurosci 3:896–902

    Article  PubMed  CAS  Google Scholar 

  • Jiang MH, Kaku T, Hada J, Hayashi Y (2002) Different effects of eNOS and nNOS inhibition on transient forebrain ischemia. Brain Res 946:139–147

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1996) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:35–527. Review Erratum 19(143)

    Google Scholar 

  • Kleim JA, Swain RA, Czerlanis CM, Kelly JL, Pipitone MA, Greenough WT (1997) Learning-dependent dendritic hypertrophy of cerebellar stellate cells: plasticity of local circuit neurons. Neurobiol Learn Mem 67:29–33

    Article  PubMed  CAS  Google Scholar 

  • Kleim JA, Pipitone MA, Czerlanis C, Greenough WT (1998) Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiol Learn Mem 69:290–306

    Article  PubMed  CAS  Google Scholar 

  • Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028:92–104

    Article  PubMed  CAS  Google Scholar 

  • Kuo H, Grant S, Muth N, Hengemihle J, Ingram DK (1994) The correlation between neuron counts and optical density of NADPH-diaphorase histochemistry in the rat striatum: a quantitative study. Brain Res 660:57–65

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15:407–415

    Article  PubMed  CAS  Google Scholar 

  • Levenes C, Daniel H, Crepel F (1998) Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited (Review). Prog Neurobiol 55:79–91

    Article  PubMed  CAS  Google Scholar 

  • Liste I, Guerra MJ, Caruncho HJ, Labandeira-Garcia JL (1997) Treadmill running induces striatal Fos expression via NMDA glutamate and dopamine receptors. Exp Brain Res 115:458–468

    Article  PubMed  CAS  Google Scholar 

  • Maffei A, Prestori F, Rossi P, Taglietti V, D’Angelo E (2002) Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol 88:627–638

    PubMed  Google Scholar 

  • Maffei A, Prestori F, Shibuki K, Rossi P, Taglietti V, D’Angelo E (2003) NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. J Neurophysiol 90:2478–2483

    Article  PubMed  CAS  Google Scholar 

  • McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res 891:168–175

    Article  PubMed  CAS  Google Scholar 

  • Montecot C, Rondi-Reig L, Springhetti V, Seylaz J, Pinard E (1998) Inhibition of neuronal (type 1) nitric oxide synthase prevents hyperaemia and hippocampal lesions resulting from kainate-induced seizures. Neuroscience 84:791–800

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Uchida S, Suzuki A, Hotta H, Aikawa Y (2003) The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats. Auton Neurosci 103:83–92

    Article  PubMed  Google Scholar 

  • Okada T, Yamada N, Tsuzuki K, Horikawa HP, Tanaka K, Ozawa S (2003) Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning. Eur J Neurosci 17:341–349

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  • Picanço-Diniz CW, Boche D, Gomes-Leal W, Perry VH, Cunningham C (2004) Neuropil and neuronal changes in hippocampal NADPH-diaphorase histochemistry in the ME7 model of murine prion disease. Neuropathol Appl Neurobiol 30:292–303

    Article  PubMed  CAS  Google Scholar 

  • Pisani A, Centonze D, Bernardi G, Calabresi P (2005) Striatal synaptic plasticity: implications for motor learning and Parkinson’s disease. Mov Disord 20:395–402

    Article  PubMed  Google Scholar 

  • Reynolds T, Hartell NA (2001) Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD. Neuroreport 12:133–136

    Article  PubMed  CAS  Google Scholar 

  • Rocha-de-Melo AP, Picanco-Diniz CW, Borba JM, Santos-Monteiro J, Guedes RC (2004) NADPH-diaphorase histochemical labeling patterns in the hippocampal neuropil and visual cortical neurons in weaned rats reared during lactation on different litter sizes. Nutr Neurosci 7(4):207–216

    Article  PubMed  CAS  Google Scholar 

  • Scherer-Singler U, Vincent SR, Kimura H, McGeer EG (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods 9:229–234

    Article  PubMed  CAS  Google Scholar 

  • Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y, Graybiel AM, Suzuki WA, Brown EN (2004) Dynamic analysis of learning in behavioral experiments. J Neurosci 24:447–461

    Article  PubMed  CAS  Google Scholar 

  • Southam E, Morris R, Garthwaite J (1992) Sources and targets of nitric oxide in rat cerebellum. Neurosci Lett 137:241–244

    Article  PubMed  CAS  Google Scholar 

  • Susswein AJ, Katzoff A, Miller N, Hurwitz I (2004) Nitric oxide and memory (Review). Neuroscientist 10:153–162

    Article  PubMed  CAS  Google Scholar 

  • Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Vaid RR, Yee BK, Rawlins JN, Totterdell S (1996) NADPH-diaphorase reactive pyramidal neurons in Ammon’s horn and the subiculum of the rat hippocampal formation. Brain Res 733(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Exercise enhances learning and hippocampal neurogenesis in aged mice. Proc Natl Acad Sci USA 9 (96):13427–13431

    Article  Google Scholar 

  • Von Bohlen und Halbach O, Albrecht D, Heinemann U, Schuchmann S (2002) Spatial nitric oxide imaging using 1,2-diaminoanthraquinone to investigate the involvement of nitric oxide in long-term potentiation in rat brain slices. Neuroimage 15:633–639

    Article  Google Scholar 

  • Wall MJ (2003) Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. Eur J Neurosci 18:869–878

    Article  PubMed  Google Scholar 

  • Wang H, Hitron IM, Iadecola C, Pickel VM (2005a) Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. Cereb Cortex 15:1250–1260

    Article  Google Scholar 

  • Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I (2005b) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45:389–403

    Article  CAS  Google Scholar 

  • Weruaga E, Brinon JG, Porteros A, Arevalo R, Aijon J, Alonso JR (2000) Expression of neuronal nitric oxide synthase/NADPH-diaphorase during olfactory deafferentation and regeneration. Eur J Neurosci 12:1177–1193

    Article  PubMed  CAS  Google Scholar 

  • Will B, Galani R, Kelche C, Rosenzweig MR (2004) Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002) (Review). Prog Neurobiol 72:167–182

    Article  PubMed  Google Scholar 

  • Yang G, Chen G, Ebner TJ, Iadecola C (1999) Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am J Physiol 277:R1760–R1770

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are in debt with Dr. Aglai Pena Barbosa de Sousa for careful analysis of the manuscript and suggestions, and with Dr. Manuel Ayres for statistical assistance. This work has been funded by CNPq, FINEP and PROPESP-UFPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristovam Wanderley Picanço Diniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, J.B., Assunção, J., Farias, J.A. et al. NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances. Exp Brain Res 175, 292–304 (2006). https://doi.org/10.1007/s00221-006-0549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0549-9

Keywords

Navigation