Skip to main content
Log in

Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Immunoreactivity to calcium-binding proteins has been a useful extension to cytoarchitectonics in defining the organization of many central nervous system regions. Previously we found subdivisions of the cat medial vestibular nucleus (MVe) defined by immunoreactivity to the calcium-binding proteins, calretinin and calbindin. Here we report similar subdivisions in both the squirrel and the macaque monkey. Calretinin immunoreactivity reveals a small area of cells and processes located dorsally in the MVe. In the anterior–posterior direction these cells extend over less than half of the nucleus. This area is not distinct in Nissl-stained sections. Elsewhere in the vestibular nuclear complex (VNC) and in the nucleus prepositus hypoglossi (PrH) there are scattered labeled cells. Immunoreactivity for calbindin shows a small patch of dense fiber label at the border of MVe and PrH, and a patchy distribution in the rest of the VNC that changes at different anterior–posterior levels. There are also calbindin-labeled cells in the underlying reticular formation over a very restricted anterior–posterior extent in both squirrel and macaque monkey. The dendrites of some of these cells can be followed into PrH, and data from other studies suggests that they may contribute to vestibular–oculomotor function. Scattered cells in the VNC are densely outlined by calbindin-labeled terminals, suggesting a major drive from the calbindin-labeled fiber input. These findings, along with observations from rodents and cats, suggest that there are subdivisions of the MVe defined by calcium-binding proteins that are homologous across rodents, cats, and New World and Old World monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams JC (1981) Heavy metal enhancement of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310:21–44

    Article  PubMed  CAS  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Baker J F (2002) Immunoreactivity for calcium-binding proteins in the vestibular nuclear complex of the monkey. Neurosci Abs #564.9

  • Baizer JS, Baker JF (2005) Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 164(1):78–91

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Baizer J (2000) Prolonged horizontal rotation induces c-fos expression in the vestibular nuclear complex of the cat. Neurosci Abs #558.4

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res 86:121–127

    Article  PubMed  CAS  Google Scholar 

  • Baker R, Gresty M, Berthoz A (1976) Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movement in the cat. Brain Res 101:366–371

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  PubMed  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992) Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Article  PubMed  CAS  Google Scholar 

  • Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:13–28

    Article  PubMed  CAS  Google Scholar 

  • Brodal A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266

    Article  PubMed  CAS  Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91:438–454

    PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. Ann N Y Acad Sci 656:363–378

    Article  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  PubMed  CAS  Google Scholar 

  • Cusick CG, Scripter JL, Darensbourg JG, Weber JT (1993) Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol 336:1–30

    Article  PubMed  CAS  Google Scholar 

  • Dechesne CJ, Thomasset M, Brehier A, Sans A (1988) Calbindin (CaBP 28 kDa) localization in the peripheral vestibular system of various vertebrates. Hear Res 33:273–278

    Article  PubMed  CAS  Google Scholar 

  • Dechesne CJ, Rabejac D, Desmadryl G (1994) Development of calretinin immunoreactivity in the mouse inner ear. J Comp Neurol 346:517–529

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Garcia Sola R, Marco P, del Rio MR, Pulido P, Ramon y Cajal S (1993) Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity. Cereb Cortex 3:39–48

    Article  PubMed  CAS  Google Scholar 

  • Deyoe EA, Hockfield S, Garren H, Van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81

    PubMed  CAS  Google Scholar 

  • Emmers R, Akert K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). University of Wisconsin Press, Madison

    Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: a retrograde labeling study. Exp Brain Res 71:129–146

    Article  PubMed  CAS  Google Scholar 

  • Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic, Philadelphia, pp 863–888

  • Graybiel AM (1983) Compartmental organization of the mammalian striatum. Prog Brain Res 58:247–256

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81:543–551

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Yaun A, Cusick CG (1995) Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. J Comp Neurol 363:545–562

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Kawakami T (1977) Inhibitory reticular neurons related to the quick phase of vestibular nystagmus—their location and projection. Exp Brain Res 27:377–386

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Igusa Y, Imai H (1978) Firing pattern of prepositus hypoglossi and adjacent reticular neurons related to vestibular nystagmus in the cat. Brain Res 144:395–403

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Igusa Y, Imai H (1980) Inhibitory connections of nystagmus-related reticular burst neurons with neurons in the abducens, prepositus hypoglossi and vestibular nuclei in the cat. Exp Brain Res 39:301–311

    PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    Article  PubMed  CAS  Google Scholar 

  • Holstein, GR (2000) Inhibitory amino acid transmitters in the vestibular nuclei. In: Neurochemistry of the vestibular system. CRC Press, Boca Raton, pp 143–162

  • Huntley GW, Jones EG (1990) Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. J Neurocytol 19:200–212

    Article  PubMed  CAS  Google Scholar 

  • Kaufman GD (1996) Activation of immediate early genes by vestibular stimulation. Ann N Y Acad Sci 781:437–442

    Article  PubMed  CAS  Google Scholar 

  • Kaufman GD, Anderson JH, Beitz AJ (1992a) Brainstem Fos expression following acute unilateral labyrinthectomy in the rat. Neuroreport 3:829–832

    Article  CAS  Google Scholar 

  • Kaufman GD, Anderson JH, Beitz AJ (1992b) Fos-defined activity in rat brainstem following centripetal acceleration. J Neurosci 12:4489–4500

    CAS  Google Scholar 

  • Kaufman GD, Shinder ME, Perachio AA (1999) Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation. Brain Res 817:246–255

    Article  PubMed  CAS  Google Scholar 

  • Kevetter GA (1996) Pattern of selected calcium-binding proteins in the vestibular nuclear complex of two rodent species. J Comp Neurol 365:575–584

    Article  PubMed  CAS  Google Scholar 

  • Kevetter GA, Leonard RB (1997) Use of calcium-binding proteins to map inputs in vestibular nuclei of the gerbil. J Comp Neurol 386:317–327

    Article  PubMed  CAS  Google Scholar 

  • Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    Article  PubMed  CAS  Google Scholar 

  • Ladpli R, Brodal A (1968) Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res 8:65–96

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37

    Article  PubMed  CAS  Google Scholar 

  • Lenzi D, Roberts WM (1994) Calcium signalling in hair cells: multiple roles in a compact cell. Curr Opin Neurobiol 4:496–502

    Article  PubMed  CAS  Google Scholar 

  • Marshburn TH, Kaufman GD, Purcell IM, Perachio AA (1997) Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation. Brain Res 761:51–58

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    Article  PubMed  CAS  Google Scholar 

  • Mize RR, Luo Q, Tigges M (1992) Monocular enucleation reduces immunoreactivity to the calcium-binding protein calbindin 28 kD in the rhesus monkey lateral geniculate nucleus. Vis Neurosci 9:471–482

    PubMed  CAS  Google Scholar 

  • Murakawa R, Kosaka T (1999) Diversity of the calretinin immunoreactivity in the dentate gyrus of gerbils, hamsters, guinea pigs, and laboratory shrews. J Comp Neurol 411:413–430

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G (1999) Chemoarchitectonic atlas of the rat forebrain. Academic, San Diego

    Google Scholar 

  • Paxinos G, Carrive P, Wang H, Wang P-Y (1999) Chemoarchitectonic atlas of the rat brainstem. Academic, San Diego

    Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pompeiano O, Mergner T, Corvaja N (1978) Commissural, perihypoglossal and reticular afferent projections to the vestibular nuclei in the cat. An experimental anatomical study with the method of the retrograde transport of horseradish peroxidase. Arch Ital Biol 116:130–172

    PubMed  CAS  Google Scholar 

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134

    Article  PubMed  Google Scholar 

  • Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    PubMed  CAS  Google Scholar 

  • Sans N, Moniot B, Raymond J (1995) Distribution of calretinin mRNA in the vestibular nuclei of rat and guinea pig and the effects of unilateral labyrinthectomy: a non-radioactive in situ hybridization study. Brain Res Mol Brain Res 28:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E, Baker J (2005) Otolith organ or semicircular canal stimulation induces c-fos expression in unipolar brush cells and granule cells of cat and squirrel monkey. Exp Brain Res 164:286–300

    Article  PubMed  Google Scholar 

  • Van Brederode JF, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22

    Article  PubMed  Google Scholar 

  • de Venecia RK, Smelser CB, Lossman SD, McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28k delineates subdivisions of the rabbit medial geniculate body. J Comp Neurol 359:595–612

    Article  PubMed  Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  PubMed  CAS  Google Scholar 

  • Yan YH, van Brederode JF, Hendrickson AE (1995a) Developmental changes in calretinin expression in GABAergic and nonGABAergic neurons in monkey striate cortex. J Comp Neurol 363:78–92

    Article  CAS  Google Scholar 

  • Yan YH, Van Brederode JF, Hendrickson AE (1995b) Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. J Neurocytol 24:825–837

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants EY07342 and DC01559. We thank Dr. Enrico Mugnaini for use of the Nikon microscope and camera, and Dr. David Bender for the gift of the macaque monkey tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Baizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baizer, J.S., Baker, J.F. Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 172, 103–113 (2006). https://doi.org/10.1007/s00221-005-0318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0318-1

Keywords

Navigation