Skip to main content
Log in

Motion adaptation: net duration matters, not continuousness

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motion processing is strongly adaptable. Adaptation strength generally increases with motion duration. Little is known, though, about the effect of motion onsets and offsets, which might be relevant if adaptation is not based on motion duration per se, but on the recent cumulated activity of motion-processing mechanisms. Thus, we presented intermittent motion with three different onset rates for adaptation. The duty cycle was kept constant at 33% while the rate of motion onsets was either 1.4, 2.8, or 5.6 per second. Stationary stimuli and continuous motion were used as reference conditions. The amplitude of the N2 component of human motion visual evoked potentials was used to quantify adaptation. All three onset rates induced virtually identical amounts of adaptation (occipitally, P=0.71; occipito-temporally, P=0.27), suggesting that the continuousness of the stimulus does not play an important role in motion adaptation. This was confirmed by measuring the motion aftereffect psychophysically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addams R (1834) An account of a peculiar optical phaenomenon seen after having looked at a moving body. Lond Edinb Phil Mag J Sci 5:373–374

    Google Scholar 

  • Amano K, Kuriki I, Takeda T (2005) Direction-specific adaptation of magnetic responses to motion onset. Vision Res 45:2533–2548

    Article  PubMed  Google Scholar 

  • American Encephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    Article  Google Scholar 

  • Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91

    Article  PubMed  CAS  Google Scholar 

  • Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547

    Article  PubMed  CAS  Google Scholar 

  • Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849

    Article  PubMed  CAS  Google Scholar 

  • Bair W (2004) No doubt about offset latency. Vis Neurosci 21:671–674

    Article  PubMed  Google Scholar 

  • Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205

    PubMed  CAS  Google Scholar 

  • Bundo M, Kaneoke Y, Inao S, Yoshida J, Nakamura A, Kakigi R (2000) Human visual motion areas determined individually by magnetoencephalography and 3D magnetic resonance imaging. Hum Brain Mapp 11:34–45

    Article  Google Scholar 

  • Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:85–96

    Article  Google Scholar 

  • Clifford CWG, Langley K (1996) Psychophysics of motion adaptation parallels insect electrophysiology. Curr Biol 6:1340–1342

    Article  PubMed  CAS  Google Scholar 

  • Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424

    PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6:116–127

    Article  PubMed  CAS  Google Scholar 

  • ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118:86–96

    Article  Google Scholar 

  • Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:47–51

    PubMed  Google Scholar 

  • Göpfert E, Müller R, Hartwig M (1984) Effects of movement adapation on movement visual evoked potentials. Doc Ophthal Proc Ser 40:321–324

    Google Scholar 

  • Göpfert E, Schlykowa L, Müller R (1988) Zur Topographie des Bewegungs-VEP am Menschen. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 19:14–20

    PubMed  Google Scholar 

  • Göpfert E, Müller R, Breuer D, Greenlee MW (1999) Similarities and dissimilarities between pattern VEPs and motion VEPs. Doc Ophthalmol 97:67–79

    Article  Google Scholar 

  • van de Grind WA, Lankheet MJM, Tao R (2003) A gain-control model relating nulling results to the duration of dynamic motion aftereffects. Vision Res 43:117–133

    Article  PubMed  Google Scholar 

  • Hammett ST, Thompson PG, Bedingham S (2000) The dynamics of velocity adaptation in human vision. Curr Biol 10:1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Heinrich SP, Bach M (2003) Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol 114:1359–1366

    Article  PubMed  Google Scholar 

  • Heinrich SP, van der Smagt MJ, Bach M, Hoffmann MB (2004) Electrophysiological evidence for independent speed channels in human motion processing. J Vision 4:469–475

    Article  Google Scholar 

  • Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion onset visual evoked potentials and subjective estimates. Vision Res 39:437–444

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann MB, Unsöld A, Bach M (2001) Directional tuning of motion adaptation in the motion-onset VEP. Vision Res 41:2187–2194

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  • Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89

    Article  PubMed  CAS  Google Scholar 

  • Kubová Z, Kuba M, Hubacek J, Vit F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72

    Article  PubMed  Google Scholar 

  • Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205

    Article  PubMed  Google Scholar 

  • Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246

    PubMed  CAS  Google Scholar 

  • Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms. Exp Brain Res 151:536–541

    Article  PubMed  Google Scholar 

  • Maurer JP, Heinrich TS, Bach M (2004) Direction tuning of human motion detection determined from a population model. Eur J Neurosci 19:3359–3364

    Article  PubMed  Google Scholar 

  • Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential visually evoked by motion. Acta Neurobiol Exp (Warsz) 48:239–249

    Google Scholar 

  • Müller R, Göpfert E, Hartwig M (1986) The effect of movement adaptation on human cortical potentials evoked by pattern movement. Acta Neurobiol Exp (Warsz) 46:293–301

    Google Scholar 

  • Müller R, Göpfert E, Leinweber M, Greenlee MW (2004) Effect of adaptation direction on the motion VEP and perceived speed of drifting gratings. Vision Res 44:2381–2392

    Article  PubMed  Google Scholar 

  • Priebe NJ, Churchland MM, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanims. J Neurophysiol 88:354–369

    PubMed  Google Scholar 

  • Probst T, Plendl H, Paulus W, Wist ER, Scherg M (1993) Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Exp Brain Res 93:345–351

    Article  PubMed  CAS  Google Scholar 

  • Schellart NAM, Trindade MJG, Reits D, Verbunt JPA, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134

    Article  PubMed  CAS  Google Scholar 

  • Schlykowa L, van Dijk BW, Ehrenstein WH (1993) Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res 1:169–174

    Article  CAS  Google Scholar 

  • Shulman GL, Schwarz J, Miezin FM, Petersen SE (1998) Effect of motion contrast on human cortical responses to moving stimuli. J Neurophysiol 79:2794–2803

    PubMed  CAS  Google Scholar 

  • Skrandies W, Jedynak A, Kleiser R (1998) Scalp distribution components of brain activity evoked by visual motion stimuli. Exp Brain Res 122:62–70

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830

    PubMed  CAS  Google Scholar 

  • Wist ER, Gross JD, Niedeggen M (1994) Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures. Perception 23:1155–1162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our subjects for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, S.P., Schilling, A.M. & Bach, M. Motion adaptation: net duration matters, not continuousness. Exp Brain Res 169, 461–466 (2006). https://doi.org/10.1007/s00221-005-0165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0165-0

Keywords

Navigation