Skip to main content
Log in

Pyramidal cell specialization in the occipitotemporal cortex of the Chacma baboon (Papio ursinus)

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Pyramidal cell structure varies systematically in occipitotemporal visual areas in monkeys. The dendritic trees of pyramidal cells, on average, become larger, more branched and more spinous with progression from the primary visual area (V1) to the second visual area (V2), the fourth (V4, or dorsolateral DL visual area) and inferotemporal (IT) cortex. Presently available data reveal that the extent of this increase in complexity parallels the expansion of occipitotemporal cortex. Here we extend the basis for comparison by studying pyramidal cell structure in occipitotemporal cortical areas in the chacma baboon. We found a systematic increase in the size of and branching complexity in the basal dendritic trees, as well as a progressive increase in the spine density along the basal dendrites of layer III pyramidal cells through V1, V2 and V4. These data suggest that the trend for more complex pyramidal cells with anterior progression through occipitotemporal visual areas is not a feature restricted to monkeys and prosimians, but is a widespread feature of occipitotemporal cortex in primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JC, Binzegger T, Martin KAC, Rockland KS (1998) The connection from cortical area V1 to V5: A light and electron microscopic study. J Neurosci 18:10525–10540

    PubMed  CAS  Google Scholar 

  • Ashford JW, Fuster JM (1985) Occipital and inferotemporal responses to visual signals in the monkey. Exp Neurol 90:444–446

    Article  PubMed  CAS  Google Scholar 

  • Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441–8453

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1913) Neue Forschungsergebnisse der Grosshirnrindenanatomie mit besonderer Berücksichtung anthropologischer Fragen. Geselsch Deuts Naturf Artze 85:200–240

    Google Scholar 

  • DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  PubMed  CAS  Google Scholar 

  • Eayrs JT, Goodhead B (1959) Postnatal development of the cerebral cortex in the rat. J Anat 93:385–402

    PubMed  CAS  Google Scholar 

  • Elston GN (2001) Interlaminar differences in the pyramidal cell phenotype in cortical areas 7m and STP (the superior temporal polysensory area) of the macaque monkey. Exp Brain Res 138:141–152

    Article  PubMed  CAS  Google Scholar 

  • Elston GN (2002) Cortical heterogeneity: implications for visual processing and polysensory integration. J. Neurocytol 31:317–335

    Article  PubMed  Google Scholar 

  • Elston GN (2003) Comparative studies of pyramidal neurons in visual cortex of monkeys. In: Kaas JH, Collins C (eds) The primate visual system. CRC Press, Boca Raton, pp 365–385

    Google Scholar 

  • Elston GN (2005) The pyramidal cell in primate evolution. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, vol 10. Elsevier (in press)

  • Elston GN, Garey LJ (2004) New research findings on the anatomy of the cerebral cortex of special relevance to anthropological questions. University of Queensland Printery, Brisbane

    Google Scholar 

  • Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7:432–452

    Article  PubMed  CAS  Google Scholar 

  • Elston GN, Elston A, Casagrande V, Kaas JH (2005a) Areal specialization in pyramidal cell structure in the visual cortex of the tree shrew: a new twist revealed in the evolution of cortical circuitry. Exp Brain Res 163:13–20

    Article  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, DeFelipe J, Manger P (2005b) Specialization in pyramidal cell structure in the cingulate cortex of the Chacma baboon (Papio ursinus): an intracellular injection study of the posterior and anterior cingulate gyrus with comparative notes on macaque and vervet monkeys. Neurosci Lett in press

  • Elston GN, Benavides-Piccione R, Elston A, Manger P, DeFelipe J (2005c) Specialization in pyramidal cell structure in the sensory-motor cortex of the Chacma baboon (Papio ursinus) with comparative notes on the macaque monkey. Anat Rec in press

  • Elston GN, Benavides-Piccione R, Elston A, Manger P, DeFelipe J (2005d) Pyramidal cell specialization in the occipitotemporal cortex of the vervet monkey (Cercopithecus pygerythrus). NeuroReport 16:967–970

    Article  PubMed  Google Scholar 

  • Elston GN, Elston A, Kaas J, Casagrande VA (2005e) Regional specialization in pyramidal cell structure in the visual cortex of the galago. An intracellular injection study with comparative notes on New World and Old World monkeys. Brain Behav Evol 66:10–21

    Article  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, DeFelipe J (2005f) A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. Cereb Cortex 15:64–73

    Article  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Manger P, DeFelipe J (2005g) Regional specialization in pyramidal cell structure in the limbic cortex of the vervet monkey (Cercopithecus pygerythrus): an intracellular injection study of the anterior and posterior cingulate gyrus. Exp Brain Res in press

  • Elston GN, Pow DV, Calford MB (1997) Neuronal composition and morphology in layer IV of two vibrissal barrel subfields of rat cortex. Cereb Cortex 7:422–431

    Article  PubMed  CAS  Google Scholar 

  • Elston G, Rosa MGP, Calford MB (1996) Comparison of dendritic fields of layer III pyramidal neurones in striate and extrastriate visual areas of the marmoset: a Lucifer Yellow intracellular injection study. Cereb Cortex 6:807–813

    Article  PubMed  CAS  Google Scholar 

  • Elston GN, Tweedale R, Rosa MGP (1999a) Cortical integration in the visual system of the macaque monkey: large scale morphological differences of pyramidal neurones in the occipital, parietal and temporal lobes. Proc R Soc Lond B 266:1367–1374

    Article  CAS  Google Scholar 

  • Elston GN, Tweedale R, Rosa MGP (1999b) Cellular heterogeneity in cerebral cortex. A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. J Comp Neurol 415:33–51

    CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Gross CG, Rodman HR, Gochin PM, Colombo MW (1993) Inferior temporal cortex as a pattern recognition device. In: Baum E (ed) Computational learning and recognition: proceedings of the 3rd NEC research symposium. Society for Industrial and Applied Mathematics, Philadelphia, pp 44–73

    Google Scholar 

  • Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor and Francis, London, pp 111–131

    Google Scholar 

  • Kaas J (2003) Early visual areas: V1, V2, V3, DM, DL and MT. In: Kaas JH, Collins C (eds) The primate visual system. CRC Press, Boca Raton, pp 139–159

    Google Scholar 

  • Kaas JH (1997) Theories of visual cortex organization in primates. In: Rockland K, Kaas JH, Peters A (eds) Cerebral cortex vol 12, Extrastriate cortex in Primates, vol 12. Plenum, New York, pp 91–125

  • Kennedy H, Martin KAC, Orban GA, Witheridge D (1985) Receptive field properties in neurones in visual area 1 and visual area 2 in the baboon. Neuroscience 14:405–415

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation. Information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Mel B (1999) Why have dendrites? A computational perspective. In: Stuart G, Spruston N, Häusser M (eds) Dendrites. Oxford University Press, New York, pp 271–289

    Google Scholar 

  • Mountcastle VB (1995) The evolution of ideas concerning the function of neocortex. Cereb Cortex 5:289–295

    Article  CAS  Google Scholar 

  • Murayama Y, Fujita I, Kato M (1997) Contrasting forms of synaptic plasticity in monkey inferotemporal and primary visual cortices. Neuroreport 8:1503–1508

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P, Mel B (2001) Impact of active dendrites and structural plasticity on the storage capacity of neural tissue. Neuron 29:779–796

    Article  PubMed  CAS  Google Scholar 

  • Rall W, Burke RE, Holmes WR, Jack JJB, Redman SR, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:159–186

    Google Scholar 

  • Rosa MGP (1997) Visuotopic organization of primate extrastriate cortex. In: Rockland K, Kaas JH, Peters A (eds) Cerebral cortex vol 12, Extrastriate cortex in Primates, vol 12. Plenum, New York, pp 127–204

  • Rosa MGP (2002) Visual maps in the adult primate cerebral cortex; some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the McDonnell Foundation, the Australian National Health and Medical Research Council (GNE) and the Spanish Ministry of Science and Technology (DGCYT PM99-0105 and BFI 2003–02745), the Comunidad Autonoma de Madrid (01/0782/2000) and the South African National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy N. Elston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elston, G.N., Benavides-Piccione, R., Elston, A. et al. Pyramidal cell specialization in the occipitotemporal cortex of the Chacma baboon (Papio ursinus). Exp Brain Res 167, 496–503 (2005). https://doi.org/10.1007/s00221-005-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0057-3

Keywords

Navigation