Skip to main content
Log in

Low frequency rTMS effects on sensorimotor synchronization

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies using low frequency (1 Hz) rTMS over the motor and premotor cortex have examined repetitive movements, but focused either on motor aspects of performance such as movement speed, or on variability of the produced intervals. A novel question is whether TMS affects the synchronization of repetitive movements with an external cue (sensorimotor synchronization). In the present study participants synchronized finger taps with the tones of an auditory metronome. The aim of the study was to examine whether motor and premotor cortical inhibition induced by rTMS affects timing aspects of synchronization performance such as the coupling between the tap and the tone and error correction after a metronome perturbation. Metronome sequences included perturbations corresponding to a change in the duration of a single interval (phase shifts) that were either small and below the threshold for conscious perception (10 ms) or large and perceivable (50 ms). Both premotor and motor cortex stimulation induced inhibition, as reflected in a lengthening of the silent period. Neither motor nor premotor cortex rTMS altered error correction after a phase shift. However, motor cortex stimulation made participants tap closer to the tone, yielding a decrease in tap-tone asynchrony. This provides the first neurophysiological demonstration of a dissociation between error correction and tap-tone asynchrony in sensorimotor synchronization. We discuss the results in terms of current theories of timing and error correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Aschersleben G, Prinz W (1995) Synchronizing actions with events: the role of sensory information. Percept Psychophys 57:305–317

    PubMed  CAS  Google Scholar 

  • Aschersleben G, Stenneken P, Cole J, Prinz W (2002) Timing mechanisms in sensorimotor synchronization. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance, vol XIX. Oxford University Press, Oxford, pp 227–244

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    PubMed  CAS  Google Scholar 

  • Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158

    Article  PubMed  CAS  Google Scholar 

  • Fraisse, P (1980) Les synchronizations sensori-motrices aux rythmes. [Sensorimotor synchronization to rhythms]. In J Requin (ed) Anticipation et comportement. Centre National, Paris, pp 233–257

    Google Scholar 

  • Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455

    PubMed  CAS  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423:52–77

    Article  PubMed  CAS  Google Scholar 

  • Hary D, Moore GP (1985) Temporal tracking and synchronization strategies. Hum Neurobiol 4:73–79

    PubMed  CAS  Google Scholar 

  • Hary D, Moore GP (1987) Synchronizing human movement with an external clock source. Biol Cybern 56:305–311

    Article  PubMed  CAS  Google Scholar 

  • Jäncke L, Loose R, Lutz K, Specht K, Shah NJ (2000) Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 10:51–66

    Article  PubMed  Google Scholar 

  • Jäncke L, Steinmetz H, Benilow S, Ziemann U (2004) Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res 155:196–203

    Article  PubMed  Google Scholar 

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  • Khedr EM, Gilio F, Rothwell J (2004) Effects of low frequency and low intensity repetitive paired pulse stimulation of the primary motor cortex. Clin Neurophysiol 115:1259–1263

    Article  PubMed  Google Scholar 

  • Kobayashi M, Hutchinson S, Theoret H, Schlaug G, Pascual-Leone A (2004) Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology 62:91–98

    PubMed  CAS  Google Scholar 

  • Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 15:5308–5318

    Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronization, and continuation phases of paced finger tapping. Neuropsychologia 42:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142:475–485

    Article  PubMed  CAS  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805

    Article  PubMed  CAS  Google Scholar 

  • Mates J (1994) A model of synchronization of motor acts to a stimulus sequence I Timing and error corrections. Biol Cybern 70:463–473

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The Visual Brain in Action. Oxford University Press, Oxford

    Google Scholar 

  • Modugno N, Curra A, Conte A, Inghilleri M, Fofi L, Agostino R, Manfredi M, Berardelli A (2003) Depressed intracortical inhibition after long trains of subthreshold repetitive magnetic stimuli at low frequency. Clin Neurophysiol 114:2416–2422

    Article  PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Schmitz F, Schnitzler A, Freund H-J, Aschersleben G, Prinz W (2000) Neuromagnetic correlates of sensorimotor synchronization. J Cogn Neurosci 12:546–555

    Article  PubMed  Google Scholar 

  • Münchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561

    PubMed  Google Scholar 

  • Paillard J (1948) Quelques données psychophysiologiques relatives au déclenchement de la commande motrice [Some psychophysiological data relating to the triggering of motor commands]. L’ Année Psychologique 47–48, 28–47

  • Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 1:333–343

    Article  Google Scholar 

  • Pollok B, Müller K, Aschersleben G, Schnitzler A, Prinz W (2004) The role of the primary somatosensory cortex in an auditorily paced finger tapping task. Exp Brain Res 156:111–117

    Article  PubMed  Google Scholar 

  • Praamstra P, Turgeon M, Hesse CW, Wing AM, Perryer L (2003) Neurophysiological correlates of error correction in sensorimotor synchronization. NeuroImage 20:1283–1297

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 15:5528–5535

    Google Scholar 

  • Repp BH (2000) Compensation for subliminal timing perturbations in perceptual-motor synchronization. Psychol Res 63:106–128

    Article  PubMed  CAS  Google Scholar 

  • Repp BH (2001a) Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. J Exp Psychol Hum Percept Perform 27:600–621

    Article  CAS  Google Scholar 

  • Repp BH (2001b) Processes underlying adaptation to tempo changes in sensorimotor synchronization. Hum Mov Sci 20:277–312

    Article  CAS  Google Scholar 

  • Repp BH, Keller PE (2004) Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q J Exp Psychol 57:499–521

    Google Scholar 

  • Repp BH (2003) Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision. J Mot Behav 35:355–370

    Article  PubMed  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    PubMed  CAS  Google Scholar 

  • Rizzo V, Siebner HR, Modugno N, Pesenti A, Münchau A, Gerschlager W, Webb RM, Rothwell JC (2004) Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 15:483–495

    Google Scholar 

  • Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, Battistini N, Lucking CH, Kristeva-Feige R (2000) Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex 10:802–808

    Article  PubMed  CAS  Google Scholar 

  • Semjen A, Schulze HH, Vorberg D (2000) Timing precision in continuation and synchronization tapping. Psychol Res 63:137–147

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269

    Article  PubMed  CAS  Google Scholar 

  • Stephan KM, Thaut MH, Wunderlich G, Schicks W, Tian B, Tellmann L, Schmitz T, Herzog H, McIntosh GC, Seitz RJ, Homberg V (2002) Conscious and subconscious sensorimotor synchronization–prefrontal cortex and the influence of awareness. NeuroImage 15:345–352

    Article  PubMed  CAS  Google Scholar 

  • Theoret H, Haque J, Pascual-Leone A (2001) Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett 22:29–32

    Article  Google Scholar 

  • Vorberg D, Wing A (1996) Modelling variability and dependence in timing. In: Heuer H, Keele SW (eds) Handbook of perception and action. Motor skills, vol 2. Academic Press, London, pp 181–262

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Doumas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doumas, M., Praamstra, P. & Wing, A.M. Low frequency rTMS effects on sensorimotor synchronization. Exp Brain Res 167, 238–245 (2005). https://doi.org/10.1007/s00221-005-0029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0029-7

Keywords

Navigation