Skip to main content

Advertisement

Log in

Cytosolic glucocorticoid receptor expression in the rat vestibular nucleus and hippocampus following unilateral vestibular deafferentation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been suggested that vestibular compensation, the process of behavioural recovery that occurs following peripheral vestibular damage, might be partially dependent on the release of glucocorticoids (GC) during the early stages of recovery from the lesion. One possibility is that glucocorticoid receptors (GRs) in the vestibular nucleus complex (VNC) might change following the lesion, altering their response to GCs. We sought to test this hypothesis by quantifying the expression of cytosolic GRs in the bilateral VNCs at 10 h, 58 h and 2 weeks following unilateral vestibular deafferentation (UVD) in rat, using western blotting. We also examined GR expression in the CA1, CA2/3 and dentate gyrus (DG) subregions of the hippocampus and measured serum corticosterone levels. Compared with sham surgery and anaesthetic controls, we found no significant changes in GR expression in the ipsilateral or contralateral VNCs at any time post-UVD. However, we did find a significant decrease in GR expression in the ipsilateral CA1 at 2 weeks post-UVD. Serum corticosterone levels were significantly lower in all groups at 58 h post-op. compared to 10 h and 2 weeks; however, there were no significant differences between the UVD and control groups at any time point. These results suggest that changes in GR expression in the VNC are unlikely to contribute to the development of vestibular compensation. However, long-term changes in GR expression in CA1 might be related to chronic deficits in hippocampal function and spatial cognition following vestibular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aardal E, Holm AC (1995) Cortisol in saliva-reference ranges and relation to cortisol in serum. Eur J Clin Chem Clin Biochem 33:927–932

    CAS  PubMed  Google Scholar 

  • Ariyasu L, Byl FM, Sprague MS, Adour KK (1990) The beneficial effect of methylprednisolone in acute vestibular vertigo. Arch Otolaryngol Head Neck Surg 116:700–703

    CAS  PubMed  Google Scholar 

  • Ashton JC, Zheng Y, Liu P, Darlington CL, Smith PF (2004) Immunohistochemical characterization and localization of cannabinoid CB1 receptors in the rat vestibular nucleus complex and effects of unilateral vestibular deafferentation. Brain Res 1021:266–273

    Article  Google Scholar 

  • Cameron SA, Dutia MB (1999) Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation. J Physiol 518:151–158

    Article  CAS  PubMed  Google Scholar 

  • Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vest Res 5:67–107

    Article  CAS  Google Scholar 

  • Darlington CL, Smith PF (2000) Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol 62:313–325

    Article  CAS  PubMed  Google Scholar 

  • de Waele C, Abitol M, Chat M, Menini C, Mallet J, Vidal PP (1994) Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur J Neurosci 6:565–576

    PubMed  Google Scholar 

  • Dieringer N (1995) Vestibular compensation: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Reul JM, de Ronde FS, Bloemers M, Ratka A (1986) Function and plasticity of brain corticosteroid receptor systems: action of neuropeptides. J Steroid Biochem 25:723–731

    Article  PubMed  Google Scholar 

  • de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocrine Rev 19:269–301

    Article  Google Scholar 

  • Gliddon CM, Darlington CL, Smith PF (2003a) Activation of the hypothalamic-pituitary-adrenal axis following vestibular deafferentation in pigmented guinea pig. Brain Res 964:306–310

    Article  CAS  PubMed  Google Scholar 

  • Gliddon CM, Smith PF, Darlington CL (2003b) Interaction between the hypothalamic-pituitary-adrenal axis and behavioural compensation following unilateral vestibular deafferentation. Acta Otolaryngol 123:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Jerram AH, Darlington CL, Smith PF (1995) Methylprednisolone reduces spontaneous nystagmus following unilateral labyrinthectomy in guinea pig. Eur J Pharmacol 275:291–293

    Article  CAS  PubMed  Google Scholar 

  • Joëls M (2001) Corticosteroid actions in the hippocampus. J Neuroendocrinol 13:657–669

    Article  PubMed  Google Scholar 

  • Joëls M, Hesen W, Karst H, de Kloet ER (1994) Steroids and electrical activity in the brain. J Steroid Biochem Mol Biol 49:391–398

    Article  PubMed  Google Scholar 

  • Johnston AR, Seckl JR, Dutia MB (2002) Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation I the rat. J Physiol 545:903–911

    Article  CAS  PubMed  Google Scholar 

  • King J, Zheng Y, Liu P, Darlington CL, Smith PF (2002) NMDA and AMPA receptor subunit protein expression in the rat vestibular nucleus following unilateral labyrinthectomy. Neuroreport 13:1541–1545

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zheng Y, King J, Darlington CL, Smith PF (2003a) Long-term changes in hippocampal NMDA receptor subunits following peripheral vestibular damage. Neuroscience 117:965–970

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zheng Y, King J, Darlington CL, Smith PF (2003b) Nitric oxide synthase and arginase expression in the vestibular nucleus and hippocampus following unilateral vestibular deafferentation in the rat. Brain Res 966:19–25

    Article  CAS  PubMed  Google Scholar 

  • Maclennan K, Smith PF, Darlington CL (1998) Adrenalectomy-induced neuronal degeneration. Prog Neurobiol 54:481–498

    Article  CAS  PubMed  Google Scholar 

  • Maclennan K, Zheng Y, Sheard P, Williams S, Darlington CL, Smith PF (2003) Adrenalectomy-induced cell death in the dentate gyrus: further characterization using TUNEL and effects of the Ginkgo biloba extract, EGb 761, and ginkgolide B. Hippocampus 13:170–183

    Article  Google Scholar 

  • Otto C, Reichardt HM, Schütz G (1997) Absence of glucocorticoid receptor-β in mice. J Biol Chem 272, 42:26665–26668

    Google Scholar 

  • Paul CAAE, Sansom AJ, Macklennan K, Darlington CL, Smith PF (1998) The effects of steroids on vestibular compensation and vestibular nucleus neuronal activity in the guinea pig. J Vest Res 8:201–207

    Article  Google Scholar 

  • Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK (2003a) Bilateral peripheral vestibular lesions produce long-term changes in spatial learning in the rat. J Vest Res 13:9–16

    Google Scholar 

  • Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK (2003b) Long-term effects of permanent vestibular lesions on hippocampal spatial firing. J Neurosci 23:6490–6498

    CAS  PubMed  Google Scholar 

  • Schautzer F, Hamilton D, Kalla R, Strupp M, Brandt T (2003) Spatial memory deficits in patients with chronic bilateral vestibular failure. Ann NY Acad Sci 1004:316–324

    Article  PubMed  Google Scholar 

  • Smith PF, Curthoys IS (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Revs 14:155–180

    Article  CAS  Google Scholar 

  • Stackman RW, Clark AS, Taube JS (2002) Hippocampal spatial representations require vestibular input. Hippocampus 12:291–303

    Article  PubMed  Google Scholar 

  • Stackman RW, Herbert AM (2002) Rats with lesions of the vestibular system require a visual landmark for spatial navigation. Behav Brain Res 128:27–40

    Article  PubMed  Google Scholar 

  • Vielkind U, Walencewicz A, Levine JM, Bohn C (1990) Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 27:360–373

    CAS  PubMed  Google Scholar 

  • Wallace DG, Hines DJ, Pelvis SM, Whishaw IQ (2002) Vestibular information is required for dead reckoning in the rat. J Neurosci 15:10009–10017

    Google Scholar 

  • Yamanaka T, Sasa M, Amano T, Miyahara H, Matsunaga T (1995) Role of glucocorticoid in vestibular compensation in relation to activation of vestibular nucleus neurons. Acta Otolaryngol Suppl 519:168–172

    CAS  PubMed  Google Scholar 

  • Zheng Y, Horii A, Appleton I, Darlington CL, Smith PF (2001) Damage to the vestibular inner ear causes long-term changes in neuronal nitric oxide synthase expression in the rat hippocampus. Neuroscience 105:1–5

    Google Scholar 

  • Zheng Y, Kerr SK, Darlington CL, Smith PF (2003) Unilateral inner ear damage results lasting changes in hippocampal CA1 field potentials in vitro. Hippocampus 13:873–878

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the New Zealand Neurological Foundation (to PS and CD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Darlington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, L., Liu, P., Gliddon, C. et al. Cytosolic glucocorticoid receptor expression in the rat vestibular nucleus and hippocampus following unilateral vestibular deafferentation. Exp Brain Res 162, 309–314 (2005). https://doi.org/10.1007/s00221-004-2168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2168-7

Keywords

Navigation