Skip to main content

Advertisement

Log in

Learned association of allocentric and egocentric information in the hippocampus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Single-cell recording was conducted in the hippocampus of rats that performed a spontaneous alternation task in a modified T-maze. In the central arm of the maze, 4 out of 45 cells (8%) were found that fired selectively depending on which turn the animals would take. This result is in disagreement with a previous study in which two-thirds of cells (22 out of 33) showed a clear bias for direction of turns. The interpretation was that the cells coded information of episodic memory. Our results do not support this hypothesis. Interestingly, over the course of training, an increasing number of cells were found that fired in correlation with the rats’ movements. It is proposed that these cells associate egocentric motor information with allocentric spatial information rather than encode episodic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–g
Fig. 3a–f
Fig. 4

Similar content being viewed by others

References

  • Ainge JA, Wood E (2003) Excitotoxic lesions of the hippocampus impair performance on a continuous alternation T-maze task with short delays but not with no delay. Society for Neuroscience 24th Annual Meeting, New Orleans, Program no. 91.1. Society for Neuroscience, Washington DC. Available online via 2003 Abstract Viewer/Itinerary Planner: http://sfn.scholarone.com/tin2003/

  • Allers K, Ruskin D, Bergstrom D, Freeman L, Ghazi L, Tierney P, Walters J (2002) Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG. J Neurophysiol 87:1118–1122

    PubMed  Google Scholar 

  • Barnes CA, Suster MS, Shen J, McNaughton BL (1997) Multistability of cognitive maps in the hippocampus of old rats. Nature 388:272–275

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis JJ, Reid IC (1992) Effects of intraventricular infusion of the N-methyl-d-aspartate (NMDA) receptor antagonist AP5 on spatial memory of rats in a radial arm maze. Behav Brain Res 47:151–157

    CAS  PubMed  Google Scholar 

  • Bower M, Euston D, Roop R, Gebara N, McNaughton B (2002) How an ambiguous sequence is learned determines how the hippocampus encodes it. Society for Neuroscience Meeting, Orlando Neurosci 23rd Annual Meeting, Orlando, Program no. 678.13. Society for Neuroscience, Washington DC. Available online via 2002 Abstract Viewer/Itinerary Planner: http://sfn.scholarone.com/tin2002/

  • Butelman ER (1990) The effect of NMDA antagonists in the radial arm maze task with an interposed delay. Pharmacol Biochem Behav 35:533–536

    Article  CAS  PubMed  Google Scholar 

  • DeCoteau W, Courtemanche R, Kubota Y, Graybiel A (2002) Anti-phase theta-range oscillations in striatum and hipocampus recorded in rats during T-maze task performance. Society for Neuroscience 23rd Annual Meeting, Orlando, Program no. 765.6. Society for Neuroscience, Washington DC. Available online via 2002 Abstract Viewer/Itinerary Planner: http://sfn.scholarone.com/tin2002/

  • Eichenbaum H (2000) A cortical–hippocampal system for declarative memory. Nat Rev 1:41–50

    Article  Google Scholar 

  • Fenton AA, Csizmadia G, Muller RU (2000) Conjoint control of hippocampal place cell firing by two visual stimuli. I. The effects of moving the stimuli on firing field positions. J Gen Physiol 116:191–209

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    CAS  PubMed  Google Scholar 

  • Foster TC, Castro CA, McNaughton BL (1989) Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science 244:1580–1582

    CAS  PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178

    CAS  PubMed  Google Scholar 

  • Gaffan D (1998) Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review. Exp Brain Res 123:201–209

    Article  CAS  PubMed  Google Scholar 

  • Gerstner W, Abbott L (1997) Learning navigational maps through potentiation and modulation of hippocampal place cells. J Comput Neurosci 4:79–94

    Article  CAS  PubMed  Google Scholar 

  • Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J Neurosci 16:8027–8040

    CAS  PubMed  Google Scholar 

  • Harris K, Henze D, Csicsvari J, Hirase H, Buzsáki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401–414

    PubMed  Google Scholar 

  • Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci 21:1635–1644

    CAS  PubMed  Google Scholar 

  • Hölscher C, Schmidt WJ (1994) Quinolinic acid lesion of the rat entorhinal cortex pars medialis produces selective amnesia in allocentric working memory (WM), but not in egocentric WM. Behav Brain Res 63:187–194

    PubMed  Google Scholar 

  • Hölscher C, Jacob W, Mallot H (2003) Reward modulates neuronal activity in the hippocampus of the rat. Behav Brain Res 142:181–191

    Article  PubMed  Google Scholar 

  • Jeffery KJ (1998) Learning of landmark stability and instability by hippocampal place cells. Neuropharmacology 37:677–687

    Article  CAS  PubMed  Google Scholar 

  • Jeffery K (2001) Plasticity of the hippocampal cellular representation of space. In: Hölscher C (ed) Neuronal mechanisms of memory formation: concepts of long term potentiation and beyond. Cambridge University Press, Cambridge, Chapter 4

  • Lavoie A, Mizumori S (1994) Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res 638:157–168

    CAS  PubMed  Google Scholar 

  • Lenck-Santini, P, Save, E, Poucet, B (2001) Place-cell firing does not depend on the direction of turn in a Y-maze alternation task. Eur J Neurosci, 13:1055–1058

    Google Scholar 

  • McDonald RJ. White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61:260–270

    CAS  PubMed  Google Scholar 

  • McNaughton B, Barnes C, Gerrard J, Gothard K, Jung M, Knierim J, Kudrimoti H, Qin Y, Skaggs W, Suster M, Weaver K (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199:173–185

    PubMed  Google Scholar 

  • Moser EI, Paulsen O (2001) New excitement in cognitive space: between place cells and spatial memory. Curr Opin Neurobiol 11:745–751

    Article  CAS  PubMed  Google Scholar 

  • Nadel L, Eichenbaum H (1999) Introduction to the special issue on place cells. Hippocampus 9:341–345

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol, 13:419–439

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    CAS  PubMed  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    CAS  Google Scholar 

  • Ragozzino KE, Leutgeb S, Mizumori SJ (2001) Dorsal striatal head direction and hippocampal place representations during spatial navigation. Exp Brain Res 139:372–376

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen M, Barnes CA, McNaughton BL (1989) A systematic experiment of cognitive mapping, working memory and temporal discontiguity theories of hippocampal function. Psychobiology 17:335–348

    Google Scholar 

  • Rawlins JNP (1985) Association across time: the hippocampus as a temporary memory store. Behav Brain Sci 8:479–496

    Google Scholar 

  • Redish AD, Battaglia FP, Chawla MK, Ekstrom AD, Gerrard JL, Lipa P, Rosenzweig ES, Worley PF, Guzowski JF, McNaughton BL, Barnes CA (2001) Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci 21:RC134

    CAS  PubMed  Google Scholar 

  • Shapiro LM, Caramanos Z (1990) NMDA antagonist MK-801 impairs acquisition but not performance of spatial working and reference memory. Psychobiology 2:231–243

    Google Scholar 

  • Shapiro M, Eichenbaum H (1999) Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9:365–384

    Article  CAS  PubMed  Google Scholar 

  • Tulving E, Kapur S, Craik F, Moskovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad USA Sci 91:2016–2020

    CAS  Google Scholar 

  • Vnek N, Rothblat LA (1996) The hippocampus and long-term object memory in the rat. J Neurosci 16:2780–2787

    CAS  PubMed  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–56

    CAS  PubMed  Google Scholar 

  • Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–33

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to CA1. J Neurosci 6:2950–2967

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hölscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölscher, C., Jacob, W. & Mallot, H.A. Learned association of allocentric and egocentric information in the hippocampus. Exp Brain Res 158, 233–240 (2004). https://doi.org/10.1007/s00221-004-1896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1896-z

Keywords

Navigation