Skip to main content
Log in

Influence of working memory on patterns of motor related cortico-cortical coupling

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Working memory is implicated in various higher-order cognitive operations. We hypothesized that the availability of a temporal representation in working memory would limit the extent of cortico-cortical coupling necessary to undertake a self-paced rhythmic movement. To this end we examined modulations in cortico-cortical interactions as determined by EEG coherence during a delay interval and subsequent movement reproduction. Right hand movement was initially paced by a metronome beat every 0.9 s, followed by a delay interval, after which hand movement was repeated in an unpaced manner. Movement reproduction after a long (22.5 s, corresponding to 25 movement cycles) compared to a short (5.4 s, corresponding to 6 movement cycles) delay interval was associated with an increased degree of functional coupling in the beta frequency band (12–30 Hz) of the left (movement-driving) hemisphere (F3-FC3, F3-C3 and F3-P3 connections) as well as mesial regions (FCz-FC3, FCz-C3 and Cz-FC3 connections) even though overall behavioral characteristics were not influenced. In addition, analysis of the EEG coherence in the delay period revealed a bilateral frontal network (F3-F4, F3-FC4, F4-FC3 and FC3-FC4 connections). Activity in the latter tended to be synchronized in the theta band (4–8 Hz) and was significantly less strong at 22.5 s than 5.4 s. These data suggest that working memory may be partly subserved by synchronization in a bilateral frontal network and may provide an intrinsic contextual influence that shapes the pattern of cortico-cortical interaction during a given task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3

Similar content being viewed by others

References

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122:855–870

    PubMed  Google Scholar 

  • Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148

    CAS  PubMed  Google Scholar 

  • Asada H, Fukuda Y, Tsunoda S, Yamaguchi M, Tonoike M (1999) Frontal midline theta rhythms reflect alternative activation of prefrontal and anterior cingulate cortex in humans. Neurosci Lett 274:29–32

    Article  CAS  PubMed  Google Scholar 

  • Baddeley A (1986) Working memory. Oxford University Press, Oxford

  • Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating prefrontal function and working memory. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge, pp 713–737

  • Brown P (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol 60:97–108

    CAS  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13:415–421

    CAS  PubMed  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608

    CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81:3065–3077

    CAS  PubMed  Google Scholar 

  • D’Esposito M, Postle BR, Rypma B (2000) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133:3–11

    CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Fein G, Raz J, Brown FF, Merrin El (1988) Common reference coherence data are confounded by power and phase effects. Electroencephalogr Clin Neurophysiol 69:581–584

    Article  CAS  PubMed  Google Scholar 

  • Florian G, Andrew C, Pfurtscheller G (1998) Do changes in coherence always reflect changes in functional coupling. Electroencephalogr Clin Neurophysiol 106:87–91

    CAS  PubMed  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333

    Article  CAS  PubMed  Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531

    PubMed  Google Scholar 

  • Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385

    Article  CAS  PubMed  Google Scholar 

  • Gruber O, Kleinschmidt A, Binkofski F, Steinmetz H, von Cramon DY (2000) Cerebral correlates of working memory for temporal information. Neuroreport 11:1689–1693

    CAS  PubMed  Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123:2306–2313

    PubMed  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    CAS  PubMed  Google Scholar 

  • Halsband U, Ito N, Tanji J, Freund HJ (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116:243–266

    PubMed  Google Scholar 

  • Harrington DL, Haaland KY, Knight RT (1998) Cortical networks underlying mechanisms of time perception. J Neurosci 18:1085–1095

    CAS  PubMed  Google Scholar 

  • Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66:376–382

    CAS  PubMed  Google Scholar 

  • Jackson JE (1991) A user’s guide to principal components. John Wiley and Sons, London, pp 1–25

  • Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933

    PubMed  Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    Article  PubMed  Google Scholar 

  • Kaiser J, Lutzenberger W, Preissl H, Mosshammer D, Birbaumer N (2000) Statistical probability mapping reveals high-frequency magnetoencephalographic activity in supplementary motor area during self-paced finger movements. Neurosci Lett 283:81–84

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    CAS  PubMed  Google Scholar 

  • Lisman JE, Idiart MA (1995) Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267:1512–1515

    CAS  PubMed  Google Scholar 

  • Luria AR (1969) Frontal lobe syndromes. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 2. North-Holland, Amsterdam, pp 725–757

  • Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109:50–62

    CAS  PubMed  Google Scholar 

  • Mangels JA, Ivry RB, Shimizu N (1998) Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res 7:15–39

    CAS  PubMed  Google Scholar 

  • Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic and EEG. Behav Brain Sci 23:371–437

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness. The Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  PubMed  Google Scholar 

  • Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD (2000) Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 3:85–90

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    CAS  PubMed  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  CAS  PubMed  Google Scholar 

  • Rappelsberger P (1989) The reference problem and mapping of coherence: a simulation study. Brain Topogr 2:63–72

    CAS  PubMed  Google Scholar 

  • Rappelsberger P, Petsche H (1988) Probability mapping: power and coherence analyses of cognitive processes. Brain Topogr 1:46–54

    CAS  PubMed  Google Scholar 

  • Rowe J, Friston K, Frackowiak R, Passingham RE (2002) Attention to action: specific modulation of corticocortical interactions in humans. Neuroimage 17:988–998

    Article  PubMed  Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A 95:7092–7096

    Article  CAS  PubMed  Google Scholar 

  • Schubotz RI, Friederici AD, von Cramon DY (2000) Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11:1–12

    Article  CAS  PubMed  Google Scholar 

  • Serrien DJ, Brown P (2002) The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp Brain Res 147:268–272

    Article  PubMed  Google Scholar 

  • Serrien DJ, Brown P (2003) The integration of cortical and behavioral dynamics during initial learning of a motor task. Eur J Neurosci 17:1098–1104

    PubMed  Google Scholar 

  • Serrien DJ, Cassidy MJ, Brown P (2003) The importance of the dominant hemisphere in the organization of bimanual movements. Hum Brain Mapp 18:296–305

    Article  PubMed  Google Scholar 

  • Stam CJ, van Cappellen van Walsum AM, Micheloyannis S (2002) Variability of EEG synchronization during a working memory task in healthy subjects. Int J Psychophysiol 46:53–66

    Article  PubMed  Google Scholar 

  • Steinmetz H, Fürst G, Meyer BU (1989) Craniocerebral topography within the international 10–20 system. Electroencephalogr Clin Neurophysiol 72:499–506

    Google Scholar 

  • Tesche CD, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci U S A 97:919–924

    Article  CAS  PubMed  Google Scholar 

  • Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143

    Google Scholar 

  • Thut G, Hauert C, Viviani P, Morand S, Spinelli L, Blanke O, Landis T, Michel C (2000) Internally driven vs. externally cued movement selection: a study on the timing of brain activity. Brain Res Cogn Brain Res 9:261–269

    Article  CAS  PubMed  Google Scholar 

  • Van Rullen R, Koch C (2003) Is perception discrete or continuous? Trends Cogn Sci 7:207–213

    Article  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Bonnet M, Macar F (1995) Programming the duration of a motor sequence: role of the primary and supplementary motor areas in man. Exp Brain Res 106:339–350

    CAS  PubMed  Google Scholar 

  • von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A 97:14748–14753

    Article  PubMed  Google Scholar 

  • Weiss S, Müller HM, Rappelsberger P (2000) Theta synchronization predicts efficient memory encoding of concrete and abstract nouns. Neuroreport 11:2357–2361

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the Medical Research Council of Great Britain and GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Serrien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrien, D.J., Pogosyan, A.H. & Brown, P. Influence of working memory on patterns of motor related cortico-cortical coupling. Exp Brain Res 155, 204–210 (2004). https://doi.org/10.1007/s00221-003-1720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1720-1

Keywords

Navigation