Skip to main content
Log in

Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Using the in vitro isolated whole brain preparation of the guinea pig maintained at 29°C, we intracellularly recorded and stained cochlear nucleus (CN) neurons and auditory nerve (AN) fibers. Discharge properties of CN cells and AN axons were tested in response to 50-ms trains of electrical pulses delivered to the AN at rates ranging from 100 to 1000 pulses per second (pps). At low stimulation rates (200–300 pps), the discharges of AN fibers and a large proportion of principal cells (bushy, octopus, stellate) in the ventral cochlear nucleus (VCN) followed with high probability each pulse in the train, resulting in synchronization of discharges within large populations of AN fibers and CN cells. In contrast, at high stimulation rates (500 pps and higher), AN fibers and many VCN cells exhibited "primary-like", "onset" and some other discharge patterns resembling those produced by natural sound stimuli. Unlike cells in the VCN, principal cells (pyramidal, giant) of the dorsal CN did not follow the stimulating pulses even at low rates. Instead, they often showed "pauser" and "build-up" patterns of activity, characteristic for these cells in conditions of normal hearing. We hypothesize that, at low stimulation rates, the response behavior of AN fibers and VCN cells is different from the patterns of neuronal activity related to normal auditory processing, whereas high stimulation rates produce more physiologically meaningful discharge patterns. The observed differences in discharge properties of AN fibers and CN cells at different stimulation rates can contribute to significant advantages of high- versus low-rate electrical stimulation of the AN used for coding sounds in modern cochlear implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A–C.
Fig. 6.

Similar content being viewed by others

References

  • Babalian AL, Vibert N, Assie G, Serafin M, Mühlethaler M, Vidal PP (1997) Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 81:405–426

    CAS  PubMed  Google Scholar 

  • Babalian AL, Ryugo DK, Rouiller EM (1999a) Intracellular responses of identified neurons in the cochlear nucleus to electrical stimulation of auditory nerves: an in vitro whole brain study (Abstract). Assoc Res Otolaryngol 22:143

    Google Scholar 

  • Babalian AL, Ryugo DK, Vischer MW, Rouiller EM (1999b) Inhibitory synaptic interactions between cochlear nuclei: evidence from an in vitro whole brain study. Neuroreport 10:1913–1917

    CAS  PubMed  Google Scholar 

  • Babalian AL, Jacomme AV, Doucet JR, Ryugo DK, Rouiller EM (2002) Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus. Neuroreport 13:555–558

    PubMed  Google Scholar 

  • Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regulatory analysis. J Neurophysiol 62:1303–1329

    CAS  PubMed  Google Scholar 

  • Boëx C, Pelizzone M, Montandon P (1996) Speech recognition with a CIS strategy for the Ineraid multichannel cochlear implant. Am J Otol 17:61–68

    PubMed  Google Scholar 

  • Clopton BM, Glass I (1984) Unit responses at cochlear nucleus to electrical stimulation through a cochlear prosthesis. Hear Res 14:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dynes SBC, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90

    Article  CAS  PubMed  Google Scholar 

  • Glass I (1983) Tuning characteristics of cochlear nucleus units in response to electrical stimulation of the cochlea. Hear Res 12:223–237

    Article  CAS  PubMed  Google Scholar 

  • Glass I (1984) Phase-locked responses of cochlear nucleus units to electrical stimulation through a cochlear implant. Exp Brain Res 55:386–390

    CAS  PubMed  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975a) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    CAS  PubMed  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975b) Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 162:269–284

    CAS  PubMed  Google Scholar 

  • Golding NL, Robertson D, Oertel D (1995) Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J Neurosci 15:3138–3153

    CAS  PubMed  Google Scholar 

  • Haenggeli A, Zhang JS, Vischer MW, Pellizone M, Rouiller EM (1998) Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates. Audiology 37:353–371

    CAS  PubMed  Google Scholar 

  • Hartmann R, Klinke R (1990) Response characteristics of nerve fibers to patterned electrical stimulation. In: Miller JM, Spelman FA (eds) Cochlear implants: models of the electrically stimulated ear. Springer, Berlin Heidelberg New York, pp 135–160

  • Javel E, Shepherd RK (2000) Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear Res 140:45–76

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Tong YC, Shepherd RK, Clark GM (1987) Responses of cat auditory nerve fibers to biphasic electrical current pulses. Ann Otol Rhinol Laryngol 96[Suppl 128]:26–30

  • Kanold PO, Manis PB (2001) A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. J Neurophysiol 85:523–538

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–731

    Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379

    Article  CAS  PubMed  Google Scholar 

  • Maffi CL, Tong YC, Clark GM (1988) Responses of cat ventral cochlear nucleus neurones to variations in the rate and intensity of electric current pulses. In: Syka J, Masterton RB (eds) Auditory pathways—structure and function, 2nd edn. Plenum Press, New York, pp 149–154

  • Manis PB (1990) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J Neurosci 10:2338–2351

    CAS  PubMed  Google Scholar 

  • Masterton RB, Granger EM (1988) Role of the acoustic striae in hearing: contribution of dorsal and intermediate striae to detection of noises and tones. J Neurophysiol 60:1841–1860

    CAS  PubMed  Google Scholar 

  • Masterton RB, Granger EM, Glendenning KK (1994) Role of the acoustic striae in hearing: mechanism for enhancement of sound detection in cats. Hear Res 73:209–222

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000) The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings. Hear Res 149:115–128

    Article  CAS  PubMed  Google Scholar 

  • Moeller AR (1969) Unit responses in the rat cochlear nucleus to repetitive transient sounds. Acta Physiol Scand 75:542–551

    PubMed  Google Scholar 

  • Mühlethaler M, De Curtis M, Walton K, Llinás R (1993) The isolated and perfused brain of the guinea-pig in vitro. Eur J Neurosci 5:915–926

    PubMed  Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295:136–154

    CAS  PubMed  Google Scholar 

  • O'Leary SJ, Tong YC, Clark GM (1994) Neural processes in the dorsal cochlear nucleus of the anaesthetised cat investigated from unit responses to electrical stimulation of the auditory nerve. Hear Res 74:181–196

    Article  CAS  PubMed  Google Scholar 

  • O'Leary SJ, Tong YC, Clark GM (1995) Responses of dorsal cochlear nucleus single units to electrical pulse train stimulation of the auditory nerve with a cochlear implant electrode. J Acoust Soc Am 97:2378–2393

    CAS  PubMed  Google Scholar 

  • Paolini AG, Clark MG (1998) Intracellular responses of the rat anteroventral cochlear nucleus to intracochlear electrical stimulation. Brain Res Bull 46:317–327

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation. Exp Brain Res 1:220–235

    CAS  PubMed  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer, Berlin Heidelberg New York, pp 94–152

  • Rhode WS, Oertel D, Smith PH (1983a) Physiological response properties of cells labelled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213:448–463

    CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH, Oertel D (1983b) Physiological response properties of cells labelled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J Comp Neurol 213:426–447

    CAS  PubMed  Google Scholar 

  • Romand R, Avan P (1997) Anatomical and functional aspects of the cochlear nucleus. In: Ehret G, Romand R (eds) The central auditory system. Oxford University Press, New York, pp 97–191

  • Rouiller EM (1997) Functional organization of the auditory pathways. In: Ehret G, Romand R (eds) The central auditory system. Oxford University Press, New York, pp 3–96

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225:167–186

    CAS  PubMed  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–144

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Javel E (1999) Electrical stimulation of the auditory nerve. II. Effect of stimulus waveshape on single fibre response properties. Hear Res 130:171–178

    Article  CAS  PubMed  Google Scholar 

  • Shofner WP, Young ED (1985) Excitatory/inhibitory response types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J Neurophysiol 54:917–939

    CAS  PubMed  Google Scholar 

  • Stypulkowski PH, Van den Honert C (1984) Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res 14:205–223

    Article  CAS  PubMed  Google Scholar 

  • Van den Honert C, Stypulkowski PH (1984) Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res 14:225–243

    Article  PubMed  Google Scholar 

  • Van den Honert C, Stypulkowski PH (1987) Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear Res 29:207–222

    Article  PubMed  Google Scholar 

  • Wan XS, Liang F, Moret V, Wiesendanger M, Rouiller EM (1992) Mapping of the motor pathways in rats: c-fos induction by intracortical microstimulation of the motor cortex correlated with efferent connectivity of the site of cortical stimulation. Neuroscience 49:749–761

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinovitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238

    CAS  PubMed  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Zerbi M (1997) Temporal representation with cochlear implants. Am J Otol 18:S30–34

    CAS  PubMed  Google Scholar 

  • Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4:1577–1588

    CAS  PubMed  Google Scholar 

  • Zhang S, Oertel D (1993) Giant cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. J Neurophysiol 69:1398–1408

    CAS  PubMed  Google Scholar 

  • Zhang S, Oertel D (1994) Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J Neurophysiol 71:914–930

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation grants 31-55836.98 and 31-66731.01, NIH/NIDCD grant DC00232, and the Swiss national center for competence in research (NCCR) "Neural plasticity and repair."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Babalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babalian, A.L., Ryugo, D.K. & Rouiller, E.M. Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp Brain Res 153, 452–460 (2003). https://doi.org/10.1007/s00221-003-1619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1619-x

Keywords

Navigation