Skip to main content
Log in

Neuronal activity in the substantia nigra in the anaesthetized rat has fractal characteristics. Evidence for firing-code patterns in the basal ganglia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Current models of the basal ganglia assume a firing-rate code for information processing. We have applied five complementary computing methods to assess firing patterns in 188 cells of the substantia nigra in the anaesthetized rat. Fractal firing activity was found in 100% of nigral cells projecting to the superior colliculus, in 51% of cells projecting to the thalamus and in 33% of cells projecting to the pedunculopontine nucleus, but was practically absent in dopaminergic nigrostriatal neurons (3%). The finding of fractal firing patterns may lead to a better understanding of the normal operational mode and pathological manifestations of the basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3.

Similar content being viewed by others

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, Berlin Heidelberg New York

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

  • Alexander GE, Strick PJ, DeLong MR (1986) Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Allan DW (1966) Statistics of atomic frequency standards. Proc. IEEE 54:221–230

    Google Scholar 

  • Fano U (1947) Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev 72:26–29

    Article  CAS  Google Scholar 

  • Farmer S (2002) Neural rhythms in Parkinson's disease. Brain 125:1175–1176

    Article  PubMed  Google Scholar 

  • Faure P, Korn H (1997) A random dynamic component in the synaptic noise of central neuron. Proc Natl Acad Sci USA 94:6506–6511

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Baez P, Suarez-Araujo CP, Rodríguez J, Rodríguez M (1998) Unsupervised classification of neural spikes with a multilayer artificial neural network. J Neurosci Methods 82:59–73

    Article  PubMed  Google Scholar 

  • Gerfen CR, Engber TR, Mahan LC, Suzel Z, Chase TN, Monsma FR, Sibbley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    CAS  PubMed  Google Scholar 

  • Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314

    CAS  PubMed  Google Scholar 

  • Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractals in human physiology. Sci Am 262:42–49

    CAS  Google Scholar 

  • Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28

    PubMed  Google Scholar 

  • González-Hernández T, Rodríguez M (2000) Compartimental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421:107–135

    Article  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: an hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    CAS  PubMed  Google Scholar 

  • Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J Appl Physiol 78:349–358

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J Neurophysiol 49:1230–1301

    CAS  PubMed  Google Scholar 

  • Liebovitch LS, Töth TI (1990) Using fractals to understand the opening and closing of ion channels. Ann Biomed Eng 18:177–194

    CAS  PubMed  Google Scholar 

  • Lowen SB, Teich MC (1996) The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains. J Acoustic Soc Am 99:3585–3591

    CAS  Google Scholar 

  • Lowen SB, Cash SS, Mu-ming Poo, Teich MC (1997) Quantal neurotransmitter secretion rate exhibits fractal behavior. J Neurosci 17:5666–5677

    CAS  PubMed  Google Scholar 

  • Mandelbrot B (1997) The fractal geometry of nature. Clotet-Tusquets Publishers, Barcelona

  • Manetti C, Ceruso MA, Giuliani A, Webber CL, Zbilut JP (1999). Recurrence quantification analysis in molecular dynamics. Ann NY Acad Sci 879:258–266

    CAS  PubMed  Google Scholar 

  • Marsden CD (1982) The mysterious motor function of the basal ganglia. Neurology 32:514–529

    CAS  PubMed  Google Scholar 

  • Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 35:619–621

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1997) New concepts about the organization of basal ganglia output. Adv Neurol 74:57–68

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PJ (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Rodríguez M, DeLong MR, Olanow W (2000) Pathophysiology of levodopa-induced dyskinesias in Parkinson's disease: problems with the current model. Ann Neurol 47 (suppl. 1):22–34

    Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Google Scholar 

  • Paxinos G, Watson C (1988) The rat brain. Academic Press, Sydney

  • Redgrave P, Prescott T, Gurney K. (1999) Is the short-latency dopamine response too short to signal reward error?. Trends Neurosci 22:146–151

    CAS  PubMed  Google Scholar 

  • Rodríguez M, González-Hernandez T (1999) Electrophysiological and morphological evidence for a GABAergic nigrostriatal pathway. J Neurosci 19:4682–4694

    Google Scholar 

  • Ross GS, Sinnamon HM (1984) Forelimb and hindlimb stepping by anesthetized rat elicited by electrical stimulation of the pons and medulla. Physiol Behav 33:201–208

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  Google Scholar 

  • Schultz W, Romo R (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63:607–624

    CAS  PubMed  Google Scholar 

  • Sugihara G, Allan W, Sobel D, Allan KD (1996) Nonlinear control of heart rate variability in human infants. Proc Natl Acad Sci USA 93:2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Warwick DA, Young LS (eds.) Dynamical systems and turbulence (Lecture notes in mathematics series, vol. 898). Springer, Berlin Heidelberg New York, pp 366–381

  • Teich MC (1992) Fractal neuronal firing patterns. In: McKenna T, Davis J, Zornetzer S (eds) Single neuron computation. Academic Press, Boston, pp 589–625

  • Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E (1997) Fractal character of the neural spike train in the visual system of the cat. J. Opt Soc Am [A] 14:529–546

    Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Young SJ, Groves PM (1977) Statistical properties of neuronal spike trains in the substantia nigra: cell types and their interactions. Brain Res 136:243–260

    Article  CAS  PubMed  Google Scholar 

  • Zirh TA, Lenz FA, Reich SG, Dougherty PM (1997) Patterns of bursting occurring in thalamic cells during parkinsonian tremor. Neuroscience 83:107–121

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejería de Educación del Gobierno de Canarias (PI2001/049), and the Ministerio de Ciencia y Tecnología del Gobierno Español (SAF2002-03382 and FISP.I.020194), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, M., Pereda, E., González, J. et al. Neuronal activity in the substantia nigra in the anaesthetized rat has fractal characteristics. Evidence for firing-code patterns in the basal ganglia. Exp Brain Res 151, 167–172 (2003). https://doi.org/10.1007/s00221-003-1442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1442-4

Keywords

Navigation