Skip to main content
Log in

Optimal Regularity for the Convex Envelope and Semiconvex Functions Related to Supersolutions of Fully Nonlinear Elliptic Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we prove optimal regularity for the convex envelope of supersolutions to general fully nonlinear elliptic equations with unbounded coefficients. More precisely, we deal with coefficients and right hand sides (RHS) in Lq with \({q \geq n}\). This extends the result of Caffarelli on the \({C_{loc}^{1,1}}\) regularity of the convex envelope of supersolutions of fully nonlinear elliptic equations with bounded RHS. Moreover, we also provide a regularity result with estimates for \({\omega}\)-semiconvex functions that are supersolutions to the same type of equations with unbounded RHS (i.e, RHS in \({L^{q}, q \geq n}\)). By a completely different method, our results here extend the recent regularity results obtained by Braga et al. (Adv Math 334:184–242, 2018) for \({q > n}\), as far as fully nonlinear PDEs are concerned. These results include, in particular, the apriori estimate obtained by Caffarelli et al. (Commun Pure Appl Math 38(2):209–252, 1985) on the modulus of continuity of the gradient of \({\omega}\)-semiconvex supersolutions (for linear equations and bounded RHS) that have a Hölder modulus of semiconvexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Ambrosio L., Cannarsa P.: On the singularities of convex functions. Manuscr. Math. 76(3–4), 421–435 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez O., Lasry J.-M., Lions P.-L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. (9) 76(3), 265–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braga M.J.E., Moreira D.: Inhomogeneous Hopf-Oleinik Lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334, 184–242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard, P.: Lasry-Lions regularization and a Lemma of Ilmanen. Rend. Semin. Mat. Univ. Padova 124:221–229 (2010). ISBN: 978-88-7784-325-8

  5. Cabré X.: On the Alexandroff-Bakelḿan-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48(5), 539–570 (1995)

    Article  MATH  Google Scholar 

  6. Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.A.: Interior W 2,p estimates for solutions of the Monge–Ampère equation. Ann. Math. (2) 131(1), 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43, American Mathematical Society Colloquium Publication. Providence (RI): American Mathematical Society (1995)

  9. Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for the degenerate Monge–Ampère equation. Rev. Mat. Iberoam. 2(1–2), 19–27 (1986)

    Article  MATH  Google Scholar 

  10. Caffarelli L., Kohn J.J., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations. Commun. Pure Appl. Math. 38(2), 209–252 (1985)

    Article  MATH  Google Scholar 

  11. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 58, p. xiv+304. Birkhäuser Boston, Inc., Boston, MA, (2004). ISBN: 0-8176-4084-3

  12. Cardaliaguet P.: Front propagation problems with nonlocal terms. II. J. Math. Anal. Appl 260(2), 572–601 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli L., Crandall M.G., Kocan M., Świȩch A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math. 49(4), 365–397 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M.G., Kocan, M., Soravia, P., Świȩch, A.: On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients. In: Progress in Elliptic and Parabolic Partial Differential Equations. Pitman Research Notes Mathematics Series, vol. 350, pp. 136–162. (Capri, 1994) Longman, Harlow (1996)

  15. De Philippis G., Figalli A.: Second order stability for the Monge–Ampère equation and strong Sobolev convergence of optimal transport maps. Anal. PDE 6(4), 993–1000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Philippis G., Figalli A.: Optimal regularity of the convex envelope. Trans. Am. Math. Soc. 367(6), 4407–4422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Textbooks in Mathematics, Revised Edition. p. xiv+299. CRC Press, Boca Raton (2015). ISBN: 978-1-4822-4238-6

  18. Fathi A., Figalli A.: Optimal transportation on non-compact manifolds. Isr. J. Math. 175(1), 1–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fathi, A., Zavidovique, M.: Ilmanen’s Lemma on insertion of C 1,1 functions. Rend. Semin. Mat. Univ. Padova 124, 203–219 (2010). ISBN: 978-88-7784-325-8

  20. Figalli, A.: The Monge–Ampère equation and its applications. In: Zürich Lectures in Advanced Mathematics, p. x+200. European Mathematical Society (EMS), Zürich, (2017)

  21. Folland, G.B.: Real analysis. Modern techniques and their applications. In: Pure and Applied Mathematics (New York), 2nd edn. p. xvi+386. A Wiley-Interscience Publication. Wiley, New York, (1999). ISBN: 0-471-31716-0

  22. Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Seconda edizione. Scuola Normale Superiore Pisa, (2012). ISBN: 978-88-7642-443-4 (eBook)

  24. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin, (2001)

  25. Han, Q.: Nonlinear elliptic equations of the second order. In: Graduate Studies in Mathematics, vol. 171, p. viii+368. American Mathematical Society, Providence, (2016). ISBN: 978-1-4704-2607-1.

  26. Leoni, G.: A first course in Sobolev spaces. Graduate Studies in Mathematics, vol. 105, p. xvi+607. American Mathematical Society, Providence, (2009). ISBN: 978-0-8218-4768-8

  27. Giusti, E.: Direct methods in the calculus of variations. p. viii+403. World Scientific Publishing Co., Inc., River Edge, (2003). ISBN: 981-238-043-4

  28. Griewank A., Rabier P.J.: On the smoothness of convex envelopes. Trans. Am. Math. Soc 322(2), 691–709 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gutiérrez, C.E.: The Monge–Ampère equation. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkäuser, Boston, (2001)

  30. Ilmanen, T.: The level-set flow on a manifold. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), In: Proceedings of Symposia in Pure Mathematics, Part 1, vol. 54, pp. 193–204, American Mathematical Society, Providence, RI, (1993)

  31. Imbert C.: Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations. J. Math. Pures Appl. (9) 85(6), 791–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kirchheim B., Kristensen J.: Differentiability of convex envelopes. Comptes Rendus Acad. Sci. Paris Sér. I Math. 333(8), 725–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koike S., Świȩch A.: Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients. J. Math. Soc. Japan 61(3), 723–755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Koike S., Świȩch A.: Local maximum principle for Lp-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Commun. Pure Appl. Anal. 11(5), 1897–1910 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mooney C.: Harnack inequality for degenerate and singular elliptic equations with unbounded drift. J. Differ. Equ. 258(5), 1577–1591 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Oberman A.M., Silvestre L.: The Dirichlet problem for the convex envelope. Trans. Am. Math. Soc. 363(11), 5871–5886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Safonov, M.V.: Non-divergence elliptic equations of second order with unbounded drift. In: Nonlinear Partial Differential Equations and Related Topics, vol. 229, pp. 211–232, American Mathematical Society Translations: Series 2, Advance in Mathematics: Scientific, vol. 64, American Mathematical Society, Providence, (2010)

  38. Sirakov, B.: Boundary Harnack Estimates and Quantitative Strong Maximum Principles for Uniformly Elliptic PDE. Int. Math. Res. Not. IMRN 24, 7457–7482 (2018)

  39. Trudinger N.S.: Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations. Rev. Mat. Iberoamericana 4(3–4), 453–468 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of A. Figalli is supported by the ERC Grant “Regularity and Stability in Partial Differential Equations (RSPDE)”. The work of D. Moreira is supported by CNPq grant “Universal-2014" -447536/2014-1. The authors would like to thank Lihe Wang for sharing nice ideas contained the appendix of this paper. The authors also thank the anonymous referees for their useful comments on a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Moreira.

Additional information

Communicated by H.-T. Yau

Dedicated to Luis Caffarelli on his 70th Birthday.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, J.E.M., Figalli, A. & Moreira, D. Optimal Regularity for the Convex Envelope and Semiconvex Functions Related to Supersolutions of Fully Nonlinear Elliptic Equations. Commun. Math. Phys. 367, 1–32 (2019). https://doi.org/10.1007/s00220-019-03370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03370-2

Navigation