Skip to main content
Log in

Entanglement Rates and the Stability of the Area Law for the Entanglement Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a conjecture by Bravyi on an upper bound on entanglement rates of local Hamiltonians. We then use this bound to prove the stability of the area law for the entanglement entropy of quantum spin systems under adiabatic and quasi-adiabatic evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambainis, A.: Quantum lower bounds by quantum arguments. In: Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, ACM, pp. 636–643 (2000)

  2. Audenaert K.M.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 40(28), 8127 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Audenaert K.M.: Quantum skew divergence. J. Math. Phys. 55, 112202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Audenaert, K.M., Kittaneh, F.: Problems and conjectures in matrix and operator inequalities (2012). preprint. arXiv:1201.5232

  5. Avron J., Seiler R., Yaffe L.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110(1), 33–49 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bañuls M.-C., Cirac J.I., Wolf M.M.: Entanglement in fermionic systems. Phys. Rev. A 76, 022311 (2007)

    Article  ADS  Google Scholar 

  7. Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bennett C.H., Harrow A.W., Leung D.W., Smolin J.A.: On the capacities of bipartite Hamiltonians and unitary gates. Inf. Theory IEEE Trans. 49(8), 1895–1911 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics Vol. 2: Equilibrium States, Models in Quantum Statistical Mechanics. Springer, (1981)

  10. Bravyi S.: Upper bounds on entangling rates of bipartite Hamiltonians. Phys. Rev. A 76, 052319 (2007)

    Article  ADS  Google Scholar 

  11. Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bravyi S., Hastings M.B., Verstraete F.: Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  13. Chen X., Gu Z.-C., Wen X.-G.: Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011)

    Article  ADS  Google Scholar 

  14. Childs A.M., Leung D.W., Verstraete F., Vidal G.: Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions. Quantum Inf. Comput. 01(3), 97–105 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Childs A.M., Leung D.W., Vidal G.: Reversible simulation of bipartite product Hamiltonians. Inf. Theory IEEE Trans. 50(6), 1189–1197 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cho, J.: Entanglement area law in thermodynamically gapped spin systems (2014). preprint. arXiv:1404.7616

  17. Cubitt T.S., Verstraete F., Cirac J.I.: Entanglement flow in multipartite systems. Phys. Rev. A 71, 052308 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43(9), 4452–4505 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. DiVincenzo D.P., Horodecki M., Leung D.W., Smolin J.A., Terhal B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902 (2004)

    Article  ADS  Google Scholar 

  20. Dür W., Vidal G., Cirac J.I., Linden N., Popescu S.: Entanglement capabilities of nonlocal Hamiltonians. Phys. Rev. Lett. 87, 137901 (2001)

    Article  ADS  Google Scholar 

  21. Dziubanski J., Hernández E.: Band-limited wavelets with subexponential decay. Can. Math. Bull. 41(4), 398–403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eisert J., Cramer M., Plenio M.B.: Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Evenbly G., Vidal G.: Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz. Phys. Rev. B 89, 235113 (2014)

    Article  ADS  Google Scholar 

  24. Fannes M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31(4), 291–294 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Foong S.K., Kanno S.: Proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. Lett. 72, 1148–1151 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Graham S., Vaaler J.D.: A class of extremal functions for the fourier transform. Trans. Am. Math. Soc. 265(1), 283–302 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011)

    Article  ADS  Google Scholar 

  28. Haah J.: Bifurcation in entanglement renormalization group flow of a gapped spin model. Phys. Rev. B 89, 075119 (2014)

    Article  ADS  Google Scholar 

  29. Hastings M.: Quasi-adiabatic continuation in gapped spin and fermion systems: Goldstone’s theorem and flux periodicity. J. Stat. Mech. Theory Exp. 2007(05), P05010 (2007)

    Article  Google Scholar 

  30. Hastings M.: Locality in quantum systems. Quantum Theory Small Large Scales 95, 171–212 (2010)

    MATH  Google Scholar 

  31. Hastings, M.: Quasi-adiabatic continuation for disordered systems: applications to correlations, Lieb–Schultz–Mattis, and Hall conductance (2010). preprint. arXiv:1001.5280

  32. Hastings, M., Michalakis, S.: Quantization of Hall conductance for interacting electrons on a torus. Commun. Math. Phys., 1–39 (2014)

  33. Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  34. Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)

    Article  MathSciNet  Google Scholar 

  35. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hastings M.B., Wen X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)

    Article  ADS  Google Scholar 

  37. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hutter A., Wehner S.: Almost all quantum states have low entropy rates for any coupling to the environment. Phys. Rev. Lett. 108, 070501 (2012)

    Article  ADS  Google Scholar 

  39. Ingham A.: A note on Fourier transforms. J. Lond. Math. Soc. 1(1), 29–32 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jordan, P., Wigner, E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928)

    Article  ADS  MATH  Google Scholar 

  41. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kittaneh F.: Inequalities for commutators of positive operators. J. Funct. Anal. 250(1), 132–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kittaneh F.: Norm inequalities for commutators of self-adjoint operators. Integral Equ. Oper. Theory 62(1), 129–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. König R., Reichardt B.W., Vidal G.: Exact entanglement renormalization for string-net models. Phys. Rev. B 79, 195123 (2009)

    Article  ADS  Google Scholar 

  46. Landau, Z., Vazirani, U., Vidick, T.: An efficient algorithm for finding the ground state of 1d gapped local Hamiltonians. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS ’14, pp. 301–302, New York, NY, USA, ACM (2014)

  47. Levin M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013)

    Google Scholar 

  48. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  49. Lieb E.H., Vershynina A.: Upper bounds on mixing rates. Quantum Inf. Comput. 13(11-12), 0986–0994 (2013)

    MathSciNet  Google Scholar 

  50. Lin C.-H., Levin M.: Generalizations and limitations of string-net models. Phys. Rev. B 89, 195130 (2014)

    Article  ADS  Google Scholar 

  51. Linden N., Popescu S., Smolin J.A.: Entanglement of superpositions. Phys. Rev. Lett. 97, 100502 (2006)

    Article  ADS  MATH  Google Scholar 

  52. Michalakis, S.: Stability of the area law for the entropy of entanglement (2012). preprint arXiv:1206.6900

  53. Nachtergaele B., Ogata Y., Sims R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb–Robinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286(3), 1073–1098 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Nachtergaele B., Schlein B., Sims R., Starr S., Zagrebnov V.: On the existence of the dynamics for anharmonic quantum oscillator systems. Rev. Math. Phys. 22(02), 207–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A 75, 032321 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  58. Page D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Schlosshauer M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005)

    Article  ADS  Google Scholar 

  60. Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)

    Article  ADS  Google Scholar 

  61. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  62. Swingle B., McGreevy J.: Renormalization group constructions of topological quantum liquids and beyond. Phys. Rev. B 93, 045127 (2016)

    Article  ADS  Google Scholar 

  63. Vaaler J.D.: Some extremal functions in fourier analysis. Bull. Am. Math. Soc. 12(2), 183–216 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  64. Van Acoleyen K., Mariën M., Verstraete F.: Entanglement rates and area laws. Phys. Rev. Lett. 111, 170501 (2013)

    Article  ADS  Google Scholar 

  65. Verstraete F., Cirac J.I.: Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  66. Verstraete F., Murg V., Cirac J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008)

    Article  ADS  Google Scholar 

  67. Wang X., Sanders B.C.: Entanglement capability of a self-inverse Hamiltonian evolution. Phys. Rev. A 68, 014301 (2003)

    Article  ADS  Google Scholar 

  68. Wen X.-G.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44(5), 405–473 (1995)

    Article  ADS  Google Scholar 

  69. Zeng, B., Wen, X.-G.: Stochastic local transformations, emergence of unitarity, long-range entanglement, gapped quantum liquids, and topological order (2014). preprint. arXiv:1406.5090

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Mariën.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariën, M., Audenaert, K.M.R., Van Acoleyen, K. et al. Entanglement Rates and the Stability of the Area Law for the Entanglement Entropy. Commun. Math. Phys. 346, 35–73 (2016). https://doi.org/10.1007/s00220-016-2709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2709-5

Navigation