Skip to main content
Log in

The Moduli Space of Asymptotically Cylindrical Calabi–Yau Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the deformation theory of compactifiable asymptotically cylindrical Calabi–Yau manifolds is unobstructed. This relies on a detailed study of the Dolbeault–Hodge theory and its description in terms of the cohomology of the compactification. We also show that these Calabi–Yau metrics admit a polyhomogeneous expansion at infinity, a result that we extend to asymptotically conical Calabi–Yau metrics as well. We then study the moduli space of Calabi–Yau deformations that fix the complex structure at infinity. There is a Weil–Petersson metric on this space, which we show is Kähler. By proving a local families L 2-index theorem, we exhibit its Kähler form as a multiple of the curvature of a certain determinant line bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac operators. Springer, Berlin (2004)

    MATH  Google Scholar 

  2. Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165(2), 311–427 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bismut J.-M., Freed D.S.: The analysis of elliptic families. I. Metrics and connections on determinant bundles. Commun. Math. Phys. 106(1), 159–176 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bismut J.-M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms. Commun. Math. Phys. 115(1), 79–126 (1988)

    Article  ADS  Google Scholar 

  5. Bismut J.-M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants. Commun. Math. Phys. 115(2), 301–351 (1988)

    Article  ADS  Google Scholar 

  6. Calabi E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12(2), 269–294 (1979)

    MathSciNet  Google Scholar 

  7. Cheeger J., Tian G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118(3), 493–571 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi–Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25(2), 517–552 (2015)

  9. Conlon R.J., Hein H.-J.: Asymptotically conical Calabi–Yau manifolds. I. Duke Math. J. 162(15), 2855–2902 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Corti, A., Haskins, M., Nordström, J., Pacini, T.: G 2-manifolds and associative submanifolds via semi-Fano 3-folds. Duke Math. J. (to appear)

  11. Corti A., Haskins M., Nordström J., Pacini T.: Asymptotically cylindrical Calabi–Yau 3-folds from weak Fano 3-folds. Geom. Topol. 17(4), 1955–2059 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Epstein C.L., Melrose R.B., Mendoza G.A.: Resolvent of the Laplacian on strictly pseudoconvex domains. Acta Math. 167(1–2), 1–106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fang H., Lu Z.: Generalized Hodge metrics and BCOV torsion on Calabi–Yau moduli. J. Reine Angew. Math. 588, 49–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Futaki A., Ono H., Wang G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83(3), 585–635 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Gell-Redman J., Rochon F.: Hodge cohomology of some foliated boundary and foliated cusp metrics. Mathematische Nachrichten 19(3), 719–729 (2015)

    MathSciNet  Google Scholar 

  16. Goto R.: Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities. J. Math. Soc. Jpn. 64(3), 1005–1052 (2012)

    Article  MATH  Google Scholar 

  17. Griffiths P., Harris J.: Principle of Algebraic Geometry. Wiley, New York (1994)

    Book  Google Scholar 

  18. Haskins, M., Hein, H.-J., Nordstrom, J.: Asymptotically cylindrical Calabi–Yau manifolds. J. Differ. Geom. (to appear). arXiv:1212.6929

  19. Hausel T., Hunsicker E., Mazzeo R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122(3), 485–548 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hein H.-J.: Gravitational instantons from rational elliptic surfaces. J. Am. Math. Soc. 25(2), 355–393 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huybrechts, D.: Complex Geometry. An Introduction. Universitext. Springer, Berlin (2005)

  22. Jeffres, T., Mazzeo, R., Rubinstein, Y.: Kähler–Einstein metrics with edge singularities. Preprint. arXiv:1105.5216

  23. Joyce D., Salur S.: Deformations of asymptotically cylindrical coassociative submanifolds with fixed boundary. Geom. Topol. 9, 1115–1146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

  25. Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT tt*-geometry. In: Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 87–174. American Mathematical Society, Providence (2008)

  26. Kawamata Y.: On deformations of compactifiable complex manifolds. Math. Ann. 235(3), 247–265 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283. Springer, New York (1986). Translated from the Japanese by Kazuo Akao, With an appendix by Daisuke Fujiwara

  28. Koiso N.: Einstein metrics and complex structures. Invent. Math. 73(1), 71–106 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Kovalev A.: Twisted connected sums and special Riemannian holonomy. J. Reine Angew. Math. 565, 125–160 (2003)

    MATH  MathSciNet  Google Scholar 

  30. Kovalev, A.: Ricci-flat deformations of asymptotically cylindrical Calabi–Yau manifolds. In: Proceedings of Gökova Geometry-Topology Conference 2005, pp. 140–156. Gökova Geometry/Topology Conference (GGT), Gökova (2006)

  31. Kovalev A., Lee N.-H.: K3 surfaces with non-symplectic involution and compact irreducible G 2-manifolds. Math. Proc. Camb. Philos. Soc. 151(2), 193–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. LeBrun C.: Fano manifolds, contact structures, and quaternionic geometry. Int. J. Math. 6(3), 419–437 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lee J., Melrose R.B.: Boundary behavior of the complex Monge–Ampère equation. Acta Math. 148, 159–192 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mazzeo R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Melrose R.B.: The Atiyah-Patodi-Singer Index Theorem. A. K. Peters, Wellesley (1993)

    MATH  Google Scholar 

  36. Melrose R.B., Piazza P.: Families of Dirac operators, boundaries and the b-calculus. J. Differ. Geom. 46(1), 99–180 (1997)

    MATH  MathSciNet  Google Scholar 

  37. Mendoza, G.A.: Boundary structure and cohomology of b-complex manifolds. In: Partial Differential Equations and Inverse Problems. Contemporary Mathematics, vol. 362, pp. 303–320. American Mathematical Society, Providence (2004)

  38. Rochon F., Zhang Z.: Asymptotics of complete K ähler metrics of finite volume on quasiprojective manifolds. Adv. Math. 231(5), 2892–2952 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Salur, S.: Asymptotically cylindrical Ricci-flat manifolds. Proc. Am. Math. Soc. 134(10), 3049–3056 (2006) (electronic)

  40. Salur, S., Todd, A.J.: Deformations of asymptotically cylindrical special Lagrangian submanifolds. In: Proceedings of Gökova Geometry-Topology Conference 2009, pp. 99–123. International Press, Somerville (2010)

  41. Santoro B.: On the asymptotic expansion of complete Ricci-flat Kähler metrics on quasi-projective manifolds. J. Reine Angew. Math. 615, 59–91 (2008)

    MATH  MathSciNet  Google Scholar 

  42. Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. In: Mathematical Aspects of String Theory (San Diego, Calif., 1986). Advanced Series in Mathematical Physics, vol. 1, pp. 629–646. World Scientific Publishing, Singapore (1987)

  43. Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Am. Math. Soc. 3(3), 579–609 (1990)

    MATH  MathSciNet  Google Scholar 

  44. Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106(1), 27–60 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Todorov A.N.: The Weil–Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi–Yau) manifolds. I. Commun. Math. Phys. 126(2), 325–346 (1989)

    Article  MATH  ADS  Google Scholar 

  46. van Coevering C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rochon.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conlon, R.J., Mazzeo, R. & Rochon, F. The Moduli Space of Asymptotically Cylindrical Calabi–Yau Manifolds. Commun. Math. Phys. 338, 953–1009 (2015). https://doi.org/10.1007/s00220-015-2383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2383-z

Keywords

Navigation