Skip to main content
Log in

Critical Two-Point Function of the 4-Dimensional Weakly Self-Avoiding Walk

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove \({|x|^{-2}}\) decay of the critical two-point function for the continuous-time weakly self-avoiding walk on \({\mathbb{Z}^{d}}\), in the upper critical dimension d = 4. This is a statement that the critical exponent \({\eta}\) exists and is equal to zero. Results of this nature have been proved previously for dimensions \({d \ge 5}\) using the lace expansion, but the lace expansion does not apply when d = 4. The proof is based on a rigorous renormalisation group analysis of an exact representation of the continuous-time weakly self-avoiding walk as a supersymmetric field theory. Much of the analysis applies more widely and has been carried out in a previous paper, where an asymptotic formula for the susceptibility is obtained. Here, we show how observables can be incorporated into the analysis to obtain a pointwise asymptotic formula for the critical two-point function. This involves perturbative calculations similar to those familiar in the physics literature, but with error terms controlled rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the p-adics I: Anomalous dimensions. (2013) (Preprint)

  2. Aizenman M.: Geometric analysis of \({\varphi^{4}}\) fields and Ising models. Parts I and II. Commun. Math. Phys. 86, 1–48 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Aragão de Carvalho C., Caracciolo S., Fröhlich J.: Polymers and \({g|\phi|^{4}}\) theory in four dimensions. Nucl. Phys. B 215(FS7), 209–248 (1983)

    Article  ADS  Google Scholar 

  4. Bauerschmidt R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. (To appear)

  6. Bauerschmidt R., Brydges D.C., Slade G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. 159, 492–529 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bauerschmidt R., Brydges D.C., Slade G.: Scaling limits and critical behaviour of the 4-dimensional n-component \({|\varphi|^{4}}\) spin model. J. Stat. Phys. 157, 692–742 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on self-avoiding walks. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, vol. 15, Am. Math. Soc., Providence, RI, pp. 395–467 (2012)

  9. Bovier A., Felder G., Fröhlich J.: On the critical properties of the Edwards and the self-avoiding walk model of polymer chains. Nucl. Phys. B 230(FS10), 119–147 (1984)

    Article  ADS  Google Scholar 

  10. Brézin E., Le Guillou J.C., Zinn-Justin J.: Approach to scaling in renormalized perturbation theory. Phys. Rev. D 8, 2418–2430 (1973)

    Article  ADS  Google Scholar 

  11. Brydges D., Evans S.N., Imbrie J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brydges, D., Slade, G.: Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In: Bhatia, R., et al. (eds.) Proceedings of the International Congress of Mathematicians, Hyderabad 2010, pp. 2232–2257, Singapore. World Scientific. (2011)

  13. Brydges D.C., Dahlqvist A., Slade G.: The strong interaction limit of continuous-time weakly self-avoiding walk. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems: In Honour of Erwin Bolthausen and Jürgen Gärtner. Springer Proceedings in Mathematics, vol. 11, pp. 275–287. Springer, Berlin (2012)

    Chapter  Google Scholar 

  14. Brydges D.C., Guadagni G., Mitter P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Brydges D.C., Imbrie J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Brydges D.C., Imbrie J.Z., Slade G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brydges D.C., Slade G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461–491 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Brydges D.C., Slade G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530–588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Brydges D.C., Slade G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Brydges D.C., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43, 639–681 (2015)

  22. Clisby N.: Accurate estimate of the critical exponent \({\nu}\) for self-avoiding walks via a fast implementation of the pivot algorithm. Phys. Rev. Lett. 104, 055702 (2010)

    Article  ADS  Google Scholar 

  23. Dimock J., Hurd T.R.: A renormalization group analysis of correlation functions for the dipole gas. J. Stat. Phys. 66, 1277–1318 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Feldman J., Magnen J., Rivasseau V., Sénéor R.: Construction and Borel summability of infrared \({\Phi^{4}_{4}}\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)

    Article  ADS  Google Scholar 

  25. Fröhlich J.: On the triviality of \({\varphi_{d}^{4}}\) theories and the approach to the critical point in \({d \geq 4}\) dimensions. Nucl. Phys. B 200(FS4), 281–296 (1982)

    Article  ADS  Google Scholar 

  26. Gawędzki K., Kupiainen A.: Massless lattice \({\varphi^{4}_{4}}\) theory: Rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)

    Google Scholar 

  27. Gawędzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories, Amsterdam (1986) (North-Holland. Les Houches 1984)

  28. Hara T.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^{4}}\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hara T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hara T., van der Hofstad R., Slade G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hara T., Slade G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hara T., Tasaki H.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^{4}}\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  33. den Hollander, F.: Random Polymers. Lecture Notes in Mathematics vol. 1974. Ecole d’Eté de Probabilités de Saint–Flour. Springer, Berlin, XXXVII–2007 (2009)

  34. Iagolnitzer D., Magnen J.: Polymers in a weak random potential in dimension four: rigorous renormalization group analysis. Commun. Math. Phys. 162, 85–121 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Soviet Phys. JETP 29, 1123–1128 (1969). (English translation of Zh. Eksp. Teor. Fiz. 56, 2087–2098 (1969))

  36. Lawler G.F.: Intersections of Random Walks. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  37. Lawler G.F., Schramm O., Werner W.: On the scaling limit of planar self-avoiding walk. Proc. Symp. Pure Math. 72, 339–364 (2004)

    Article  MathSciNet  Google Scholar 

  38. Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  39. McKane A.J.: Reformulation of n → 0 models using anticommuting scalar fields. Phys. Lett. A 76, 22–24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  40. Nienhuis B.: Exact critical exponents of the O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  41. Parisi G., Sourlas N.: Self-avoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406 (1980)

    Article  Google Scholar 

  42. Schram, R.D., Barkema, G.T., Bisseling, R.H.: Exact enumeration of self-avoiding walks. J. Stat. Mech. P06019 (2011)

  43. Slade, G.: The Lace Expansion and its Applications. Lecture Notes in Mathematics vol. 1879. Ecole d’Eté de Probabilités de Saint–Flour XXXIV–2004 Springer, Berlin (2006)

  44. Slade, G., Tomberg, A.: Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component \({|\varphi|^4}\) model. (2014) (Preprint). arXiv:1412.2668

  45. Wegner F.J., Riedel E.K.: Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. Phys. Rev. B 7, 248–256 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Brydges.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerschmidt, R., Brydges, D.C. & Slade, G. Critical Two-Point Function of the 4-Dimensional Weakly Self-Avoiding Walk. Commun. Math. Phys. 338, 169–193 (2015). https://doi.org/10.1007/s00220-015-2353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2353-5

Keywords

Navigation