Skip to main content
Log in

Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It has been observed (Evans in Braz J Phys 30:42–57, 2000; Jeon et al. in Ann Probab 28:1162–1194, 2000) that some zero-range processes exhibit condensation, a macroscopic fraction of particles concentrates on one single site. We examined in (Beltrán and Landim in Probab Theory Relat Fields 152:781–807, 2012) the asymptotic evolution of the condensate in the case where the dynamics is reversible, the number of sites is fixed, and the total number of particles diverges. We proved in that paper that in an appropriate time-scale the condensate evolves according to a symmetric random walk whose transition rates are proportional to the capacities of the underlying random walk. In this article, we extend this result to the condensing totally asymmetric zero-range process, a non-reversible dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armendáriz I., Loulakis M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Relat. Fields 145, 175–188 (2009)

    Article  MATH  Google Scholar 

  2. Armendáriz I., Loulakis M.: Conditional distribution of heavy tailed random variables on large deviations of their sum. Stoch. Proc. Appl. 121, 1138–1147 (2011)

    Article  MATH  Google Scholar 

  3. Armendáriz I., Großkinsky S., Loulakis M.: Zero range condensation at criticality. Stoch. Process. Appl. 123, 346–3496 (2013)

    Google Scholar 

  4. Beltrán J., Landim C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beltrán J., Landim C.: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Relat. Fields 152, 781–807 (2012)

    Article  MATH  Google Scholar 

  6. Beltrán J., Landim C.: Metastability of reversible finite state Markov processes. Stoch. Proc. Appl. 121, 1633–1677 (2011)

    Article  MATH  Google Scholar 

  7. Beltrán, J., Landim, C.: Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. To appear in Ann. Inst. H. Poincaré, Probab. Statist. (2014)

  8. Beltrán J., Landim C.: Tunneling and metastability of continuous time Markov chains II, the nonreversible case. J. Stat. Phys. 149, 598–618 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Beltrán, J., Landim, C.: A martingale approach to metastability. To appear in Probab. Theory Related Fields (2014)

  10. Bianchi, A., Gaudillière, A.: Metastable states, quasi-stationary and soft measures, mixing time asymptotics via variational principles. arXiv:1103.1143 (2011)

  11. Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Relat. Fields 119, 99–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Cassandro M., Galves A., Olivieri E., Vares M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35, 603–634 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Doyle, P.: Energy for Markov Chains. Preprint http://math.dartmouth.edu/doyle/:16 (1994)

  15. Evans M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30, 42–57 (2000)

    Article  ADS  Google Scholar 

  16. Evans M.R., Hanney T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38(19), R195–R240 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Ferrari P.A., Landim C., Sisko V.V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128, 1153–1158 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gaudillière, A.: Condenser physics applied to Markov chains: A brief introduction to potential theory. Online http://arxiv.org/abs/0901.3053

  19. Gaudillière A., Landim C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields 158, 55–89 (2014)

    Article  MATH  Google Scholar 

  20. Gois, B., Landim, C.: Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. To appear in Ann. Probab. (2014)

  21. Godrèche C., Luck J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A 38, 7215–7237 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Großkinsky S., Schütz G.M., Spohn H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389–410 (2003)

    Article  MATH  Google Scholar 

  23. Jara M., Landim C., Teixeira A.: Quenched scaling limits of trap models. Ann. Probab. 39, 176–223 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jara, M., Landim, C., Teixeira, A.: Universality of trap models in the ergodic time scale. To appear in Annals of Probability (2014)

  25. Jeon I., March P., Pittel B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28, 1162–1194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Time symmetry and martingale approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345. Springer, Heidelberg, (2012)

  27. Lacoin, H., Teixeira, A.: A Mathematical Perspective on Metastable Wetting. arXiv:1312.7732 (2013)

  28. Landim, C.: A Topology for Limits of Markov Chains. arXiv:1310.3646 (2013)

  29. Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)

  30. Slowik, M.: A Note on Variational Representations of Capacities for Reversible and Non-reversible Markov Chains. Preprint (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Landim.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landim, C. Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes. Commun. Math. Phys. 330, 1–32 (2014). https://doi.org/10.1007/s00220-014-2072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2072-3

Keywords

Navigation