Skip to main content
Log in

Simplicial Ricci Flow

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a discrete form of Hamilton’s Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, \({{\mathcal S}}\). These new algebraic equations are derived using the discrete formulation of Einstein’s theory of general relativity known as Regge calculus. A Regge–Ricci flow (RRF) equation can be associated to each edge, , of a simplicial lattice. In defining this equation, we find it convenient to utilize both the simplicial lattice \({{\mathcal S}}\) and its circumcentric dual lattice, \({{\mathcal S}^*}\). In particular, the RRF equation associated to ℓ is naturally defined on a d-dimensional hybrid block connecting with its (d−1)-dimensional circumcentric dual cell, *. We show that this equation is expressed as the proportionality between (1) the simplicial Ricci tensor, Rc , associated with the edge \({\ell\in{\mathcal S}}\), and (2) a certain volume weighted average of the fractional rate of change of the edges, \({\lambda\in \ell^*}\), of the circumcentric dual lattice, \({{\mathcal S}^*}\), that are in the dual of . The inherent orthogonality between elements of \({\mathcal S}\) and their duals in \({{\mathcal S}^*}\) provide a simple geometric representation of Hamilton’s RF equations. In this paper we utilize the well established theories of Regge calculus, or equivalently discrete exterior calculus, to construct these equations. We solve these equations for a few illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, H.-D., Chow, B., Chu, S.-C., Yau, S.-T. (eds): Collected papers on Ricci flow in series in geometry and topology, Vol. 37. International Press, Somerville (2003)

    Google Scholar 

  2. Chow B., Knopf D.: The Ricci flow: an introduction, mathematical surveys and monographs, Vol. 110. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  3. Chow B., Lu P., Ni L.: Hamilton’s Ricci flow, graduate studies in mathematics, Vol. 77. American Mathematical Society, Providence (2006)

    Google Scholar 

  4. Chow B., Chu S.-C., Glickenstein D., Guenther C., Isenberg J., Ivey T., Knopf D., Lu P., Luo F., NiL.The Ricci Flow: Techniques and applications, Part 1: geometric aspects, mathematical surveys and monographs, Vol. 135. American Mathematical Society, Providence (2007)

    Google Scholar 

  5. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. preprint, math.DG/0211159

  6. Perelman, G.: Ricci flow with surgery on three-manifolds. preprint, math.DG/0303109

  7. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. preprint, math.DG/0307245

  8. Yu, X., Yin, X., Han, W., Gao, J., Gu, X.: Scalable routing in 3D high genus sensor networks using graph embedding. INFOCOM 2681–2685, 2012

  9. Wang Y., Shi J., Yin X., Gu X., Chan T.F., Yau S.-T., Toga A.W., Thompson P.M.: Brain surface conformal parameterization with the Ricci flow. IEEE Trans. Med. Imaging 31(2), 251–264 (2012)

    Article  Google Scholar 

  10. Gu X., Luo F., Yau S.-T.: Fundamentals of computational conformal geometry. Math. Comput. Sci. 4(4), 389–429 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chow B., Luo F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63, 97–129 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Peiro J., Sherwin S.: Finite difference, finite element and finite volume methods for partial differential equations, in handbook of materials modeling, methods and models, Vol. 1. Springer, Berlin (2005)

    Google Scholar 

  13. Humphries, S. Jr.: Finite-element methods for electromagnetism. http://www.fieldp.com/freeware/finite_element_electromagnetic.pdf; originally published as Field Solutions on Computers (ISBN 0-8493-1668-5). Boca Raton: Taylor and Francis, 1997

  14. Regge T.: General relativity without coordinates. Il Nuovo Cimento 19, 558–571 (1961)

    Article  MathSciNet  Google Scholar 

  15. Gentle A.P., Miller W.A.: A fully (3+1)-D Regge calculus model of the Kasner cosmology. Class. Quant. Grav. 15, 389–405 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. e-print arXiv:math/0508341v2 [math.DG] on arxiv.org (2005)

  17. Chow B., Luo F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63, 97–129 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Glickenstein D.: Discrete conformal variations and scalar curvature on piecewise flat two- and three-dimensional manifolds. J. Differ. Geom. 87, 201–238 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Glickenstein, D.: Geometric triangulations and discrete Laplacians on manifolds. arXiv:math/0508188 [math.MG]

  20. Ge, H.: Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension. arXiv:1301.3398 [math.DG]

  21. Forman R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29, 323–374 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lin Y, Yau ST: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17, 343–356 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Knopf D.: Estimating the trace-free Ricci tensor in Ricci flow. J. Proc. Am. Math. Soc. 137, 3099–3103 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Thurston W.: Three-dimensional geometry and topology, Vol. 1. Edited by Silvio Levy, Princeton Mathematical Series, 35. Princeton University Press, Princeton (1997)

    Google Scholar 

  25. McDonald, J.R., Miller, W.A., Alsing P.M., Gu X.D., Wang X., Yau S-T., On exterior calculus and curvature in piecewise-flat manifolds. J. Math. Phys. (2012, submitted) arxiv.org/abs/1212.0919

  26. Hamilton R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  27. Cartan, E.: Leons sur la Géométrie des Espaces de Riemann (Gauthier-Villars; Paris, 1951); translated into English by J. Glazebrook, Geometry of Riemann Spaces, Lie Groups: History Frontiers and Applications, Vol. XIII, Brookline: Math Science Press, 1983

  28. Friedberg R., Lee T.D.: Nucl. Phys. B 242, 145–166 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Miller W.A.: The geometric content of the Regge equations as illuminated by the boundary of a boundary principle. Found. Phys. 16, 143–169 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  30. Miller W.A.: The Hilbert action in Regge calculus. Class. Quantum Grav. 14, L199–L204 (1997)

    Article  ADS  Google Scholar 

  31. McDonald J.R., Miller W.A.: The scalar curvature in Regge calculus. Class. Quantum Grav. 25, 195017 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Alsing, P.M., McDonald, J.R., Miller, W.A.: The simplicial Ricci tensor. Class. Quantum Grav. 28, 155007 (2011)

  33. Vanderzee, E., Hirani, A.N., Guoy, D., Ramos, E.A.: SIAM J. Sci. Comput. 31(6), 4497–4523 (2010) arXiv:0802.2108v3 [cs.CG] [cs.CG]

    Google Scholar 

  34. Caselle M., D’Adda A., Magena L.: Phys. Lett. B232, 457 (1989)

    Article  ADS  Google Scholar 

  35. McDonald, J.R., Miller, W.A.: A discrete representation of Einstein’s geometric theory of gravitation: the fundamental role of dual tessellations in Regge calculus. In: van de Weijgaert, R., Vegter, G., Ritzerveld, J., Icke, V. (eds.) Tessellations in the science: virtues, techniques and applications of geometric tilings (2008) arXiv:0804.0279

  36. Hartle J.B., Sorkin R.: Boundary terms in the action for the Regge calculus. General Relat. Gravit. 13(6), 541–549 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sorkin R.: Time Evolution Problem in Regge Calculus. Phys. Rev. D 12, 385–396 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  38. Eisenhart L.P.: Riemannian geometry, 8t h ed. Princeton Univ. Press, Princeton (1997)

    Google Scholar 

  39. Friedberg R., Lee T.D.: Derivation of Regge’s action from Einstein’s theory of general relativity. Nucl. Phys. B242, 145–166 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  40. Coxeter H.S.M.: Regular polytopes. Dover Publ., NY (1973)

    Google Scholar 

  41. Alsing, P.M., Corne, M., McDonald, J.R., Miller, W.A., Ray, S.: 3D simplicial Ricci flow of the 600-cell model (2013, in preparation)

  42. Alsing, P.M., McDonald, J.R., Miller, W.A., Tison, C., Wang, X.: 3D simplicial Ricci flow of the dumbbell model. (2013, in preparation)

  43. Angenent S., Knopf D.: An example of neckpinching for Ricci flow on S n+1. Math. Res. Lett. 11, 493–518 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Angenent S., Isenberg J., Knopf D.: Formal matched asymptotics for degenerate Ricci flow neckpinches. Nonlinearity 24, 2265–2280 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Cao, H.-D.: Private communication, UBC, Vancouver BC, 2011

  46. Hamilton R.S.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  Google Scholar 

  47. Gu, X., Zeng, W.: Private communication, London: SUNY Stoney Brook, 2012

  48. Gentle A.P., Kheyfets A., McDonald J.R., Miller W.A.: A Kirchhoff-like conservation law in Regge calculus. Class. Quant. Grav. 26, 015005 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warner A. Miller.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, W.A., McDonald, J.R., Alsing, P.M. et al. Simplicial Ricci Flow. Commun. Math. Phys. 329, 579–608 (2014). https://doi.org/10.1007/s00220-014-1911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1911-6

Keywords

Navigation