Skip to main content
Log in

A Very Smooth Ride in a Rough Sea

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It has been known for some time that a 3D incompressible Euler flow that has initially a barely smooth velocity field nonetheless has Lagrangian fluid particle trajectories that are analytic in time for at least a finite time Serfati (C. R. Acad. Sci. Paris Série I 320:175–180, 1995), Shnirelman (Glob. Stoch. Anal., http://arxiv.org/abs/1205.5837v1, 2012). Here an elementary derivation is given, based on Cauchy’s form of the Euler equations in Lagrangian coordinates. This form implies simple recurrence relations among the time-Taylor coefficients of the Lagrangian map, used here to derive bounds for the C 1,γ Hölder norms of the coefficients and infer temporal analyticity of Lagrangian trajectories when the initial velocity is C 1,γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos C., Frisch U.: Régularité d’un fluide parfait de données initiales höldériennes. C. R. Acad. Sc. Paris. Série A 281, 775–778 (1975)

    MATH  Google Scholar 

  2. Bennett, A.: Lagrangian Fluid Dynamics. Cambridge: Cambridge University Press, 2005

  3. Cauchy, A.L.: Sur l’état du fluide à une époque quelconque du mouvement. Mémoires extraits des recueils de l’Académie des sciences de l’Institut de France, Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (Extraits des Mémoires présentés par divers savants à l’Académie royale des Sciences de l’Institut de France et imprimés par son ordre). Sciences mathématiques et physiques. Tome I, 1827 Seconde Partie. pp. 33–73, 1827. Available at http://gallica.bnf.fr/ark:/12148/bpt6k90181x.r=Oeuvres+completes+d%27Augustin+Cauchy.langFR

  4. Chemin J.-Y.: Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace. J. Math. Pures Appl. (Paris) 71, 407–417 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Constantin P.: An Eulerian–Lagrangian approach for incompressible fluids: local theory. J. Am. Math. Soc. 14, 263–278 (2000)

    Article  MathSciNet  Google Scholar 

  6. De Lellis, C., Székelyhidi, L.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. http://arxiv.org/abs/1205.3626v1 [math.AP] (2013, to appear)

  7. Ebin D.G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Frisch, U., Matsumoto, T.: A mixed Eulerian-Lagrangian description of inviscid incompressible fluid flow. Res. Notes (2012)

  9. Gamblin P.: Système d’Euler incompressible et régularité microlocale analytique. Ann. Inst. Fourier (Grenoble) 44(5), 1449–1475 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin: Springer, 1998

  11. Günter N.M.: On the main problem of hydrodynamics. Proc. (Izvestiya) M.V. Steklov Phys. Math. Inst. 2, 1–168 (1927)

    Google Scholar 

  12. Gunther, N.M.: La théorie du potentiel et ses applications aux problèmes fondamentaux de la physique mathématique. Paris: Gauthier–Villars, 1934. (Engl. transl.: N.M. Günter. Potential theory, and its applications to basic problems of mathematical physics. New York: Frederick Ungar Publ., 1967)

  13. Ladyzhenskaya, O., Uraltseva, N.: Linear and quasilinear elliptic equations. New York-London: Academic Press, 1968

  14. Ohkitani, K.: koji-ohkitani.staff.shef.ac.uk/MAS411/files411/ch01.pdf. This is a chapter of a forthcoming book

  15. Serfati, Ph.: Étude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l’équation d’Euler incompressible. Thèse de Doctorat de l’Université Paris 6 (1992)

  16. Serfati Ph.: Équation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Paris. Série I 320, 175–180 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Serfati Ph.: Structures holomorphes à faible régularité spatiale en mécanique des fluides. J. Math. Pures Appl. 74, 95–104 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Shnirelman, A.: On the analyticity of particle trajectories in the ideal incompressible fluid. Glob. Stoch. Anal., 2012. http://arxiv.org/abs/1205.5837v1 [math.AP]

  19. Weber H.: Über eine Transformation der hydrodynamischen Gleichungen. J. Reine Ange. Math. (Crelle) 68, 286–292 (1868)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisch, U., Zheligovsky, V. A Very Smooth Ride in a Rough Sea. Commun. Math. Phys. 326, 499–505 (2014). https://doi.org/10.1007/s00220-013-1848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1848-1

Keywords

Navigation