Skip to main content
Log in

The Exoticness and Realisability of Twisted Haagerup–Izumi Modular Data

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asaeda M., Haagerup U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({5+\sqrt{17})/2}\) . Commun. Math. Phys. 202, 1–63 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bantay P., Gannon T.: Vector-valued modular functions for the modular group and the hypergeometric equation. Commun. Number Theory Phys. 1, 637–666 (2008)

    MathSciNet  Google Scholar 

  3. Bantay, P., Gannon, T.: Vector-valued modular forms and the Riemann-Hilbert problem. (In preparation)

  4. Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. http://arXiv.org/abs/0909.4099v2 [math.OA], 2009

  5. Bisch D.: On the structure of finite depth subfactors, pp. 175–194. Birkhäuser, Boston (1994)

    Google Scholar 

  6. Böckenhauer J., Evans D.E.: Modular invariants, graphs and α-induction for nets of subfactors, I. Commun. Math. Phys. 197, 361–386 (1998)

    Article  ADS  MATH  Google Scholar 

  7. Böckenhauer J., Evans D.E.: Modular invariants, graphs and α-induction for nets of subfactors, III. Commun. Math. Phys. 205, 183–228 (1999)

    Article  ADS  MATH  Google Scholar 

  8. Böckenhauer J., Evans D.E.: Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213, 267–289 (2000)

    Article  ADS  MATH  Google Scholar 

  9. Böckenhauer, J., Evans, D.E.: Modular invariants from subfactors. In: Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math. 294. Providence, RI: Amer. Math. Soc., 2002, pp. 95–131

  10. Böckenhauer, J., Evans, D.E.: Modular invariants and subfactors. In: Mathematical Physics in Mathematics and Physics (Siena, 2000). Fields Inst. Commun. 30. Providence, RI: Amer. Math. Soc., 2001, pp. 11–37

  11. Böckenhauer J., Evans D.E., Kawahigashi Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999)

    Article  ADS  MATH  Google Scholar 

  12. Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210, 733–784 (2000)

    Article  ADS  MATH  Google Scholar 

  13. Conway J.H., Sloane N.J.A.: Low-dimensional lattices. I: Quadratic forms of small determinant. Proc. R. Soc. Lond. A 418, 17–41 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Coste A., Gannon T.: Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B 323, 316–321 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Coste A., Gannon T., Ruelle P.: Finite group modular data. Nucl. Phys. B 581, 679–717 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–526 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393–429 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Dong, C., Mason, G.: Integrability of C 2-cofinite vertex operator algebras. Int. Math. Res. Not. 2006, Art. ID 80468, (2006)

  19. Dovgard R., Gepner D.: Conformal field theories with a low number of primary fields. J. Phys. A, Math. Theor. 42, 304009 (2009)

    Article  MathSciNet  Google Scholar 

  20. Evans, D.E.: Critical phenomena, modular invariants and operator algebras. In: Operator algebras and mathematical physics (Constanţa 2001). Cuntz, J., Elliott, G. A., Stratila, S. et al., (eds.) Bucharest: The Theta Foundation, 2003, pp. 89–113

  21. Evans D.E.: From Ising to Haagerup. Markov Processes Relat. Fields 13, 267–287 (2007)

    MATH  Google Scholar 

  22. Evans D.E.: Twisted K-theory and modular invariants: I. Quantum doubles of finite groups. In: Bratteli, O., Neshveyev, S., Skau, C. (eds) Operator Algebras: The Abel Symposium 2004, Springer, Berlin-Heidelberg (2006)

    Google Scholar 

  23. Evans D.E., Gannon T.: Modular invariants and twisted equivariant K-theory. Commun. Number Theory Phys. 3, 209–296 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Evans D.E., Kawahigashi Y.: Orbifold subfactors from Hecke algebras II: quantum double and braiding . Commun. Math. Phys. 196, 331–361 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Evans D.E., Kawahigashi Y.: Quantum Symmetries on Operator Algebras. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  26. Evans D.E., Pinto P.R.: Subfactor realisation of modular invariants. Commun. Math. Phys. 237, 309–363 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  27. Evans, D.E. Pinto, P.R.: Modular invariants and the double of the Haagerup subfactor. In: Advances in Operator Algebras and Mathematical Physics (Sinaia 2003). Boca, F.-P., Bratteli, O., Longo, R., Siedentop, H. (eds.) Bucharest: The Theta Foundation, 2006, pp. 67–88

  28. Evans, D.E., Pinto, P.R.: Subfactor realisation of modular invariants: II. Intern. J Math. (to appear)

  29. Frenkel I.B., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fröhlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Defect lines, dualities, and generalised orbifolds. http://arXiv.org/abs/0909.5013vi [math-ph], 2009

  31. Gannon T.: Modular data: the algebraic combinatorics of conformal field theory. J. Alg. Combin. 22, 211–250 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gannon T. : The level 2 and 3 modular invariants for the orthogonal algebras. Canad. Math. J. 2, 503–521 (2000)

    Article  MathSciNet  Google Scholar 

  33. Goddard P., Kent A., Olive D.: Unitary representations of Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103, 105–119 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] < 3 +\sqrt{3}}\) . In: Subfactors. H. Araki et al (eds.) Singapore: World Scientific, 1994, pp.1–38

  35. Hong, S.-M., Rowell , E. , Wang Z.: On exotic modular tensor categories. Commun. Contemp. Math. 10(Suppl. 1), 1049–1074 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang Y.-Z.: Vertex operator algebras, the Verlinde conjecture, and modular tensor categories. Proc. Natl. Acad. Sci. USA 102, 5352–5356 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Izumi M.: The structure of sectors associated with Longo-Rehren inclusions, I. General theory. Commun. Math. Phys. 213, 127–179 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  38. Izumi M.: The structure of sectors associated with Longo-Rehren inclusions, II. Examples. Rev. Math. Phys. 13, 603–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Izumi M., Kawahigashi Y.: Classification of subfactors with the principal graph \({D_{n}^{(1)}}\) . J. Funct. Anal. 112, 257–286 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jones, V.F.R.: An invariant for group actions. In: de la Harpe, P. (ed.) Algèbres d’opèrateurs (Les Plans-sur-Bex 1978). Lecture Notes in Math. 725. Berlin: Springer, 1979, pp. 237–253.

  41. Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Kac, V.G.: Infinite-dimensional Lie algebras, 3rd edn. Cambridge: Cambridge University Press, 1990

  43. Kac V.G., Todorov I.T.: Affine orbifolds and rational conformal field theory extensions of \({W_{1+\infty}^*}\) . Commun. Math. Phys. 190, 57–111 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Kac V.G., Wakimoto M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)

    Article  ADS  MATH  Google Scholar 

  46. Kosaki H., Munemasa A., Yamagami S.: Irreducible bimodules associated with crossed product algebras Internat. J Math 3, 661–676 (1992)

    MATH  Google Scholar 

  47. Lepowski J., Li H.: Introduction to Vertex Operator Algebras and their Representations. Boston: Birkhäuser: Boston, 2004

  48. Longo R.: Index of subfactors and statistics of quantum fields, I. Commun. Math. Phys. 126, 217–247 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Masuda T.: An analogue of Longo’s canonical endomorphism for bimodule theory and its application to asymptotic inclusions. Internat. J. Math. 8, 249–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry and Topology, H. C. Lee (ed.), Nato ASI Series, Vol. 238, Newyork: Plenium Press, 1990, pp.263–361

  52. Müger M.: From subfactors to categories and topology II. The quantum double of tensor categories and subfactors. J. Pure Appl. Alg. 180, 159–219 (2003)

    Article  MATH  Google Scholar 

  53. Ostrik V.: Module categories over the Drinfeld double of a finite group Inter. Math. Research Notices 27, 1507–1520 (2003)

    Article  MathSciNet  Google Scholar 

  54. Peters, E.: A planar algebra construction of the Haagerup subfactor. http://arXiv.org/abs/0902.1294v2 [math.OA], 2009

  55. Rehren, K.-H.: Braid group statistics and their superselection rules. In: The algebraic theory of superselection sectors (Palermo 1989). Singapore: World Scientific, 1990, pp. 333–355

  56. Schellekens A.N., Warner N.P.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D 34, 3092–3096 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  57. Sutherland C.: Cohomology and extensions of von Neumann algebras I, II. Publ. RIMS. Kyoto Univ. 16, 135–174 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  58. Turaev, V.G.: Quantum Invariants of Knots and 3-manifolds. de Gruyter Studies in Mathematics, Vol. 18. Berlin: Walter de Gruyter, 1994

  59. Walton M.A.: Conformal branching rules and modular invariants. Nucl. Phys. B 322, 775–790 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  60. Witten E.: The search for higher symmetry in string theory. Physics and mathematics of strings. Philos. Trans. Roy. Soc. London Ser. A 329(1605), 349–357 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Xu F.: Mirror extensions of local nets. Commun. Math. Phys. 270, 835–847 (2007)

    Article  ADS  MATH  Google Scholar 

  62. Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Gannon.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, D.E., Gannon, T. The Exoticness and Realisability of Twisted Haagerup–Izumi Modular Data. Commun. Math. Phys. 307, 463–512 (2011). https://doi.org/10.1007/s00220-011-1329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1329-3

Keywords

Navigation