Skip to main content
Log in

Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and C in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R.: Remarks on 3D Boltzmann linear operator without cutoff. Transp. Th. Stat. Phys. 28-5, 433–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Alexandre R.: Around 3D Boltzmann operator without cutoff. A New formulation. Math. Mod. Num. Anal. 343, 575–590 (2000)

    Article  MathSciNet  Google Scholar 

  3. Alexandre R.: Some solutions of the Boltzmann equation without angular cutoff. J. Stat. Phys. 104, 327–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandre R.: Integral kernel estimates for a linear singular operator linked with Boltzmann equation. Part I: Small singularities 0 < ν < 1. Indiana Univ. Math. J. 55(6), 1975–2021 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandre R.: A review of Boltzmann equation with singular kernels. Kin. Rel. Mod. 2(4), 551–646 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long-range interactions. Arch. Rat. Mech. Anal. 152, 327–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alexandre R., ElSafadi M.: Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases. Math. Mod. Meth. Appl. Sci. 15, 907–920 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Uncertainty principle and regularity for Boltzmann type equations. C. R. Acad. Sci. Paris, Ser. I 345, 673–677 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Uncertainty principle and kinetic equations. J. Funct. Anal. 255, 2013–2066 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularity of solutions for the Boltzmann equation without angular cutoff. C. R. Math. Acad. Sci. Paris, Ser. I 347(13–14), 747–752 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Local existence for non-cutoff Boltzmann equation. C. R. Math. Acad. Sci. Paris, Ser. I 347(21–22), 1237–1242 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch. Rat. Mech. Anal. 198(Issue 1), 39–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J. Funct. Anal. http://hal.archives-ouvertes.fr/hal-00496950/fr/ (To appear)

  14. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential. Anal. Appl. http://hal.archives-ouvertes.fr/hal-00510633/fr/, 2010 (To appear)

  15. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Qualitative properties of solutions to the Boltzmann equation without angular cutof. Arch. Rational Mech. Anal. (To appear)

  16. Alexandre R., Villani C.: On the Boltzmann equation for long-range interaction. Comm. Pure Appl. Math. 55, 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Arkeryd L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rat. Mech. Anal. 77(1), 11–21 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bobylev A.: The theory of nonlinear, spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math. Phys. 7, 111–233 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Bouchut F., Desvillettes L.: A proof of smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14, 47–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic equations and asymptotic theory. Series in Appl. Math., Paris: Gauthiers-Villars, 2000

  21. Boudin L., Desvillettes L.: On the singularities of the global small solutions of the full Boltzmann equation. Monat. für Math. 131, 91–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, 67, Berlin-Heidelberg-NewYork: Springer-Verlag, 1988

  23. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical theory of Dilute gases. Applied Mathematical Sciences, 106. New York: Springer-Verlag, 1994

  24. Chen H., Li W.-X., Xu C.-J.: The Gevrey hypoellipticity for a class of kinetic equations Comm. PDE. 36, 693–728 (2011) doi:10.1080/03605302.2010.507689

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen Y., Desvillettes L., He L.: Smoothing effects for classical solutions of the full Landau equation. Arch. Rat. Mech. Anal. 193, 21–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Desvillettes L.: About the regularization properties of the non cut-off Kac equation. Commun. Math. Phys. 168, 417–440 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Desvillettes L.: Regularization for the non Cutoff 2D Radially Symmetric Boltzmann Equation with a Velocity Dependant Cross Section. Trans. Th. Stat. Phy. 25(3–5), 383–394 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Desvillettes L.: Regularization Properties of the 2-Dimensional Non Radially Symmetric Non Cutoff Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules. Trans. Th. Stat. Phys. 26(3), 341–357 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Desvillettes, L.: About the use of the Fourier transform for the Boltzmann equation. Summer School on “Methods and Models of Kinetic Theory” (M& MKT 2002). Riv. Mat. Univ. Parma 7(2), 1–99 (2003)

    Google Scholar 

  30. Desvillettes L., Furioli G., Terraneo E.: Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules. Trans. Amer. Math. Soc. 361, 1731–1747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. Part I: existence, uniqueness and smoothness. Comm. Part. Diff. Eqs. 25-1-2, 179–259 (2000)

    Article  MathSciNet  Google Scholar 

  32. Desvillettes L., Wennberg B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Part. Diff. Eqs. 29-1-2, 133–155 (2004)

    Article  MathSciNet  Google Scholar 

  33. Desvillettes L., Golse F.: On a model Boltzmann equation without angular cutoff. Diff. Int. Eqs. 13(4-6), 567–594 (2000)

    MathSciNet  MATH  Google Scholar 

  34. DiPerna R.J., Lions P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Duan R.-J.: Stability of the Boltzmann equation with potential forces on torus. Physica D 238, 1808–1820 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Duan R.-J., Li M.-R., Yang T.: Propagation of singularities in the solutions to the Boltzmann equation near equilibrium. Math. Mod. Meth. Appl. Sci. 18, 1093–1114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Duan R.-J., Ukai S., Yang T.: A combination of energy method and spectral analysis for study of equations of gas motion. Front. Math. China 4(2), 253–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fefferman C.: The uncertainty principle. Bull. Amer. Math. Soc. 9, 129–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grad, H.: Asymptotic Theory of the Boltzmann Equation II. In: Rarefied Gas Dynamics, J. A. Laurmann, ed, vol. 1, New York: Academic Press, 1963, pp. 26–59

  40. Grad, H.: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl. Math. Vol. 17, Providence, RI: Amer. Math. Soc., 1965, editor R. Finn, pp. 154-183

  41. Gressman, P.-T., Strain, R.-M.: Global strong solutions of the Boltzmann equation without cutoff. http://www.math.upenn.edu/~strain/preprints/gsNoncut1.pdf, 2009

  42. Gressman P.-T., Strain R.-M.: Global classical solutions of the Boltzmann equation with long range potential. Proc. Nat. Acad. Sci. U.S.A 107(13), 5744–5749 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Gressman, P.-T., Strain, R.-M.: Global classical solutions of the Boltzmann equation with long range interations and soft potentials. Preprint 2010, avaliable at http://arXiv.org/abs/1002.3639v2 [math.AP], 2010

  44. Gressman, P.-T., Strain, R.-M.: Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Preprint 2010, http://arXiv.org/abs/1007.1276v2 [math.AP], 2010

  45. Guo Y.: The Landau equation in a periodic box. Comm. Math. Phys. 231, 391–434 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Maths. J. 53(4), 1081–1094 (2004)

    Article  MATH  Google Scholar 

  47. Huo Z.H., Morimoto Y., Ukai S., Yang T.: Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kin. Rel. Mods. 1, 453–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kaniel S., Shinbrot M.: The Boltzmann equation. I. Uniqueness and local existence. Commun. Math. Phys. 59, 65–84 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  49. Lions, P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, I, II, and III. J. Math. Kyoto Univ., 34, 391–427, 429–461, 539–584 (1994)

    Google Scholar 

  50. Lions P.L.: On Boltzmann and Landau equations. Philos. Trans. Roy. Soc. London Ser. A 346(1679), 191–204 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Lions P.L.: Regularity and compactness for Boltzmann collision operator without angular cut-off. C. R. Acad. Sci. Paris Séries I 326, 37–41 (1998)

    ADS  MATH  Google Scholar 

  52. Liu T.-P., Yu S.-H.: Micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1), 133–179 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Liu T.-P., Yang T., Yu S.-H.: Energy method for Boltzmann equation. Phys. D 188, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu T.-P., Yang T., Yu S.-H., Zhao H.-J.: Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Ration. Mech. Anal. 181, 333–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lu X.A.: Direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228, 409–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Morimoto Y.: The uncertainty principle and hypoelliptic operators. Publ. RIMS Kyoto Univ. 23, 955–964 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  57. Morimoto Y.: Estimates for degenerate Schrödinger operators and hypoellipticity for infinitely degenerate elliptic operators. J. Math. Kyoto Univ. 32, 333–372 (1992)

    MathSciNet  MATH  Google Scholar 

  58. Morimoto Y., Morioka T.: The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators. Bull. Sc. Math. 121, 507–547 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Morimoto Y., Ukai S.: Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff. J. Pseudo-Dier. Oper. Appl. 1, 139–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularity of solutions to the spatially homogeneous Boltzmann equation without Angular cutoff. Disc. Cont. Dyn. Sys. Series A 24(1), 187–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Morimoto Y., Xu C.-J.: Hypoelliticity for a class of kinetic equations. J. Math. Kyoto Univ. 47, 129–152 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Mouhot C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Part. Diff. Eqs. 31, 1321–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mouhot C., Strain R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87(5), 515–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pao, Y.P.: Boltzmann collision operator with inverse power intermolecular potential, I, II. Commun. Pure Appl. Math. 27, 407–428, 559–581 (1974)

    Google Scholar 

  65. Strain R.M.: The Vlasov-Maxwell-Boltzmann system in the whole space. Commun. Math. Phys. 268(2), 543–567 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Strain R., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Rat. Mech. Anal. 187(2), 287–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ukai, S.: Les solutions globales de l’equation de Boltzmann dans l’espace tout entier et dans le demi-espace. C. R. Acad. Sci. Paris Ser. A-B 282 (1976), no. 6, Ai, A317–A320

  69. Ukai S.: Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J. Appl. Math. 1-1, 141–156 (1984)

    Article  MathSciNet  Google Scholar 

  70. Ukai, S.: Solutions of the Boltzmann equation In: Pattern and Waves – Qualitative Analysis of Nonlinear Differential Equations eds. M. Mimura, T. Nishida, Studies of Mathematics and Its Applications 18, Tokyo: Kinokuniya-North-Holland, 1986, pp. 37–96

  71. Villani C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143, 273–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. Villani C.: Regularity estimates via entropy dissipation for the spatially homogeneous Boltzmann equation. Rev. Mat. Iberoam. 15(2), 335–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. Villani C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds) Handbook of Mathematical Fluid Mechanics, pp. 1–1. Amsterdem, NorthHolland (2002)

    Google Scholar 

  74. Yu, H.: Convergence rate for the Boltzmann and Landau equations with soft potentials. Proc. Royal Soc. Edinburgh 139A, 393–416 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ukai.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandre, R., Morimoto, Y., Ukai, S. et al. Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff. Commun. Math. Phys. 304, 513–581 (2011). https://doi.org/10.1007/s00220-011-1242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1242-9

Keywords

Navigation