Skip to main content
Log in

Breather Solutions in Periodic Media

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For nonlinear wave equations existence proofs for breathers are very rare. In the spatially homogeneous case up to rescaling the sine-Gordon equation \({\partial^2_t u = \partial^2_x u - \sin (u)}\) is the only nonlinear wave equation which is known to possess breather solutions. For nonlinear wave equations in periodic media no examples of breather solutions have been known so far. Using spatial dynamics, center manifold theory and bifurcation theory for periodic systems we construct for the first time such time periodic solutions of finite energy for a nonlinear wave equation

$$ s(x) \partial^2_t u(x,t) = \partial^2_x u(x,t) - q(x) u(x,t)+ r(x)u(x,t)^3, $$

with spatially periodic coefficients s, q, and r on the real axis. Such breather solutions play an important role in theoretical scenarios where photonic crystals are used as optical storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, D., Paleari, S., Penati, T.: Existence and continuous approximation of small amplitude breathers in 1D and 2D Klein–Gordon lattices. Preprint 2009

  2. Bambusi D., Penati T.: Continuous approximation of breathers in one and two dimensional DNLS lattices. Nonlinearity 23, 143–157 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Birnir B., McKean H.P., Weinstein A.: The rigidity of sine-Gordon breathers. Comm. Pure Appl. Math. 47(8), 1043–1051 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Busch K., Schneider G., Tkeshelashvili L., Uecker H.: Justification of the Nonlinear Schrödinger equation in spatially periodic media. ZAMP 57, 1–35 (2006)

    Article  MathSciNet  Google Scholar 

  5. Busch K., von Freyman G., Linden S., Mingaleev S.F., Theshelashvili L., Wegener M.: Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007)

    Article  ADS  Google Scholar 

  6. Denzler J.: Nonpersistence of breather families for the perturbed sine Gordon equation. Commun. Math. Phys. 158(2), 397–430 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Eastham M.S.P.: The spectral theory of periodic differential equations. Scottish Academic Press, Edinburgh (1973)

    MATH  Google Scholar 

  8. Eckmann J.-P., Wayne C.E.: The nonlinear stability of front solutions for parabolic partial differential equations. Commun. Math. Phys. 161(2), 323–334 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman lectures on physics. Vol. 2: Mainly electromagnetism and matter. Reading, MA-London: Addison-Wesley Publishing Co., Inc., 1964

  10. Groves M.D., Mielke A.: A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc. Roy. Soc. Edinburgh Sect. A 131, 83–136 (2001)

    Article  MathSciNet  Google Scholar 

  11. Groves M.D., Schneider G.: Modulating pulse solutions for a class of nonlinear wave equations. Commun. Math. Phys. 219(3), 489–522 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Groves M.D., Schneider G.: Modulating pulse solutions for quasilinear wave equations. J. Diff. Eq. 219(1), 221–258 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Groves M.D., Schneider G.: Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales. Commun. Math. Phys. 278(3), 567–625 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Applied Mathematical Sciences, 42. New York: Springer-Verlag, 1983

  15. Haragus M., Schneider G.: Bifurcating fronts for the Taylor-Couette problem in infinite cylinders. Z. Angew. Math. Phys. 50(1), 120–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer Lecture Notes in Mathematics Vol. 840, Berlin-Heidelberg-NewYork:Springer, 1981

  17. James G., Noble P.: Breathers on diatomic Fermi-Pasta-Ulam lattices. Physica D 196(1–2), 124–171 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. James, G., Sirr, Y.: Center manifold theory in the context of infinite one-dimensional lattices. The Fermi-Pasta-Ulam problem,Lecture Notes in Phys. Vol. 728, Berlin-Heidelberg-New York: Springer, 2008, pp. 208–238

  19. James G., Sanchez-Rey B., Cuevas J.: Breathers in inhomogeneous nonlinear lattices: an analysis via center manifold reduction. Rev. Math. Phys. 21(1), 1–59 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. MacKay R.S., Aubry S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kirchgässner K.: Wave solutions of reversible systems and applications. J. Diff. Eq. 45, 113–127 (1982)

    Article  MATH  Google Scholar 

  22. Lescarret V., Blank C., Chirilus-Bruckner M., Chong C., Schneider G.: Standing modulating pulse solutions for a nonlinear wave equation in periodic media. Nonlinearity 22(8), 1869–1898 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Ntinos A.A.: Lengths of instability intervals of second order periodic differential equations. Quart. J. Math. Oxford 27, 387–394 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pelinovsky D.E., Kevrekidis P.G., Frantzeskakis D.J.: Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D 212, 20–53 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Pelinovsky D., Schneider G.: Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential. Applicable Analysis 86(8), 1017–1036 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pelinovsky D., Schneider G., MacKay R.S.: Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential. Commun. Math. Phys. 284(3), 803–831 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Reed M., Simon B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London (1978)

    MATH  Google Scholar 

  29. Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. In: Dynamics reported: expositions in dynamical systems, Berlin: Springer, 1992, pp. 125–163

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Schneider.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, C., Chirilus-Bruckner, M., Lescarret, V. et al. Breather Solutions in Periodic Media. Commun. Math. Phys. 302, 815–841 (2011). https://doi.org/10.1007/s00220-011-1191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1191-3

Keywords

Navigation