Skip to main content
Log in

Irreducible Characters of General Linear Superalgebra and Super Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a new method to solve the irreducible character problem for a wide class of modules over the general linear superalgebra, including all the finite-dimensional modules, by directly relating the problem to the classical Kazhdan-Lusztig theory. Furthermore, we prove that certain parabolic BGG categories over the general linear algebra and over the general linear superalgebra are equivalent. We also verify a parabolic version of a conjecture of Brundan on the irreducible characters in the BGG category of the general linear superalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brundan J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \({\mathfrak{gl}(m|n)}\). J. Amer. Math. Soc. 16, 185–231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beilinson A., Bernstein J.: Localisation de \({\mathfrak g}\)-modules. C.R. Acad. Sci. Paris Ser. I Math. 292, 15–18 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Brylinski J.L., Kashiwara M.: Kazhdan-Lusztig conjecture and holonomic systerms. Invent. Math. 64, 387–410 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Berele A., Regev A.: Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebras I: cellularity. http://arxiv.org/abs/0806.1532v1[math.RT], 2008

  6. Cheng, S.-J., Kwon, J.-H.: Howe duality and Kostant’s homology formula for infinite-dimensional Lie superalgebras. Int. Math. Res. Not. 2008, Art. ID rnn 085 (2008), 52 pp

  7. Cheng S.-J., Kwon J.-H., Lam N.: A BGG-type resolution for tensor modules over general linear superalgebra. Lett. Math. Phys. 84, 75–87 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cheng, S.-J., Lam, N., Wang, W.: Super duality and irreducible characters of ortho-symplectic Lie superalgebras. http://arxiv.org/abs/0911.0129v1[math.RT], 2009

  9. Cheng S.-J., Lam N., Zhang R.B.: Character Formula for Infinite Dimensional Unitarizable Modules of the General Linear Superalgebra. J. Algebra 273, 780–805 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng S.-J., Wang W.: Brundan-Kazhdan-Lusztig and Super Duality Conjectures. Publ. Res. Inst. Math. Sci. 44, 1219–1272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cheng S.-J., Wang W., Zhang R.B.: Super duality and Kazhdan-Lusztig polynomials. Trans. Amer. Math. Soc. 360, 5883–5924 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deodhar V.: On some geometric aspects of Bruhat orderings II: the parabolic analogue of Kazhdan-Lusztig polynomials. J. Algebra 111, 483–506 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Enright T., Willenbring J.: Hilbert series, Howe duality and branching for classical groups. Ann. of Math. (2) 159, 337–375 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garland H., Lepowsky J.: Lie Algebra Homology and the Macdonald-Kac Formulas. Invent. Math. 34, 37–76 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category \({\mathcal {O}}\). Graduate Studies in Mathematics 94, Providence, RI: Amer. Math. Soc. 2008

  16. Hochschild G.: Relative homological algebra. Trans. Amer. Math. Soc. 82, 246–269 (1956)

    MATH  MathSciNet  Google Scholar 

  17. Kac V.: Lie superalgebras. Adv. Math. 16, 8–96 (1977)

    Article  Google Scholar 

  18. Kac, V.: Representations of Classical Lie Superalgebras. Lect. Notes in Math. 676, Berlin Heidelberg-New york: Springer Verlag, 1978, pp. 597–626

  19. Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics, 204. Boston, MA: Birkhauser Boston, Inc., 2002

  20. Kac V., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kazhdan D., Lusztig G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Liu L.: Kostant’s Formula for Kac-Moody Lie algebras. J. Algebra 149, 155–178 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lepowsky J.: A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49, 496–511 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  24. Leites, D., Saveliev, M., Serganova, V.: Embedding of osp(N/2) and the associated non-linear supersymmetric equations. In: Group Theoretical Methods in Physics, Vol. I (Yurmala, 1985), Utrecht: VNU Sci. Press, 1986, pp. 255–297

  25. Lascoux A., Leclerc B., Thibon J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun. Math. Phys. 181, 205–263 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Mitchell, B.: Theory of Categories. Pure and Applied Mathematics XVII, New York-San Francisco-London: Academic Press, 1965

  27. Popescu, N.: Abelian Categories with Applications to Rings and Modules. London Mathematical Society Monographs 3, London-New York: Academic Press, 1973

  28. Penkov I., Serganova V.: Cohomology of G/P for classical complex Lie supergroups G and characters of some atypical G-modules. Ann. Inst. Fourier 39, 845–873 (1989)

    MATH  MathSciNet  Google Scholar 

  29. Rocha-Caridi A., Wallach N.: Projective modules over graded Lie algebras I. Math. Z. 180, 151–177 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sergeev A.: The Tensor algebra of the identity representation as a module over the Lie superalgebras gl(n,m) and Q(n). Math. USSR Sbornik 51, 419–427 (1985)

    Article  MATH  Google Scholar 

  31. Serganova V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra \({\mathfrak{gl}(m\vert n)}\). Selecta Math. (N.S.) 2, 607–651 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tanaka J.: On homology and cohomology of Lie superalgebras with coefficients in their finite-dimensional representations. Proc. Japan Acad. Ser. A Math. Sci. 71(3), 51–53 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vogan D.: Irreducible characters of semisimple Lie Groups II: The Kazhdan-Lusztig Conjectures. Duke Math. J. 46, 805–859 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Jen Cheng.

Additional information

Communicated by Y. Kawahigashi

Partially supported by an NSC-grant and an Academia Sinica Investigator grant.

Partially supported by an NSC-grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, SJ., Lam, N. Irreducible Characters of General Linear Superalgebra and Super Duality. Commun. Math. Phys. 298, 645–672 (2010). https://doi.org/10.1007/s00220-010-1087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1087-7

Keywords

Navigation