Skip to main content
Log in

Wheeled Pro(p)file of Batalin-Vilkovisky Formalism

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using a technique of wheeled props we establish a correspondence between the homotopy theory of unimodular Lie 1-bialgebras and the famous Batalin-Vilkovisky formalism. Solutions of the so-called quantum master equation satisfying certain boundary conditions are proven to be in 1-1 correspondence with representations of a wheeled dg prop which, on the one hand, is isomorphic to the cobar construction of the prop of unimodular Lie 1-bialgebras and, on the other hand, is quasi-isomorphic to the dg wheeled prop of unimodular Poisson structures. These results allow us to apply properadic methods for computing formulae for a homotopy transfer of a unimodular Lie 1-bialgebra structure on an arbitrary complex to the associated quantum master function on its cohomology. It is proven that in the category of quantum BV manifolds associated with the homotopy theory of unimodular Lie 1-bialgebras quasi-isomorphisms are equivalence relations.

It is shown that Losev-Mnev’s BF theory for unimodular Lie algebras can be naturally extended to the case of unimodular Lie 1-bialgebras (and, eventually, to the case of unimodular Poisson structures). Using a finite-dimensional version of the Batalin-Vilkovisky quantization formalism it is rigorously proven that the Feynman integrals computing the effective action of this new BF theory describe precisely homotopy transfer formulae obtained within the wheeled properadic approach to the quantum master equation. Quantum corrections (which are present in our BF model to all orders of the Planck constant) correspond precisely to what are often called “higher Massey products” in the homological algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batalin I., Vilkovisky G.: Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  2. Berezin F.A.: Introduction into Supernanlysis. D. Reidel, Dordrecht (1987)

    Google Scholar 

  3. Cattaneo, A.: On the BV formalism. Unpublished., available at http://www.math.Uzh.ch/reports/07_05.pdf

  4. Cattaneo, A.: From topological field theory to deformation quantization and reduction. In: Proceedings of ICM 2006, Vol. III (European Mathematical Society, 2006), pp. 339–365

  5. Cattaneo A., Felder G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Cattaneo, A., Felder, G.: Effective Batalin–Vilkovisky theories, equivariant configuration spaces and cyclic chains. http://arXiv.org/abs0802.1706v1[math-ph], 2008

  7. Cattaneo, A.S., Keller, B., Torossian, C., Brugui‘eres, A.: Deformation, Quantification, Theorie de Lie, Panoramas et Synth‘ese 20, 186pp., Paris: Soc. Math. France, 2005

  8. Cattaneo, A., Rossi, C.: Higher-dimensional BF theories in the Batalin-Vilkovisky formalism: The BV action and generalized Wilson loops Commun. Math. Phys. 221, 591–657

  9. Chuang, J., Lazarev, A.: Feynman diagrams and minimal models for operadic algebras. preprint http://arXiv.org/abs/0802.3507v1[math-ph], 2008

  10. Drinfeld, V.: On some unsolved problems in quantum group theory. In: Lecture Notes in Math., Berlin-Heidelberg-New York: Springer, 1510, (1992), pp. 1–8

  11. Gan W.L.: Koszul duality for dioperads. Math. Res. Lett. 10, 109–124 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  12. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. http://arXiv.org/abs/hep-th/9403055v1, 1994

  13. Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76, 203–272 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ginzburg, V., Schedler, T.: Differential operators and BV structures in noncommutative geometry. http://arXiv.org/abs/0710.3392v2[math.QA], 2007

  15. Granåker, J.: Unimodular L -algebras. Preprint, http://arXiv.org/abs/0803.1763v1[math.QA], 2008

  16. Halbout, G.: Quantization of r-Z-quasi-Poisson manifolds and related modified classical dynamical r-matrices. Preprint, http://arXiv.org/abs/0801.2789v1[math.QA], 2008

  17. Hertling C., Manin Yu.I.: Weak Frobenius manifolds. Intern. Math. Res. Notices 6, 277–286 (1999)

    Article  MathSciNet  Google Scholar 

  18. Khudaverdian H.: Semidensities on odd symplectic supermanifolds. Commun. Math. Phys. 247, 353–390 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Khudaverdian, H., Voronov, Th.: Differential forms and odd symplectic geometry. Preprint, http://arXiv.org/abs/math/0606560v4[math.DG], 2006

  20. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, Vol. I (Dijon), (Dordrecht: Kluwer Acad. Publ.), 2000, pp. 255–307

  22. Leites, D.: Tеорuя суnермноƨообрaзuŭ. Πетрозаводск, 1983

  23. Lambe L., Stasheff J.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58(3), 363–376 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Manin Yu.I.: Gauge Field Theory and Complex Geometry. Springer, Berlin-Heidelberg-New York (1997)

    MATH  Google Scholar 

  25. Manin, Yu.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. Providence, RI: Amer. Math. Soc., 1999

  26. Markl, M., Merkulov, S., Shadrin, S.: Wheeled props and the master equation. J. Pure and Appl. Algebra 213, 496–535

  27. May J.P.: The Geometry of Iterated Loop Spaces, Volume 271 of Lecture Notes in Mathematics. Springer- Verlag, New York (1972)

    Google Scholar 

  28. McLane S.: Categorical algebra. Bull. Amer. Math. Soc. 71, 40–106 (1965)

    Article  MathSciNet  Google Scholar 

  29. Merkulov S.A.: Strong homotopy algebras of a Kähler manifold. Intern. Math. Res. Notices 1999, 153–164 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Merkulov S.A.: Prop profile of Poisson geometry. Commun. Math. Phys. 262, 117–135 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Merkulov, S.A.: Graph complexes with loops and wheels. In: Algebra, Arithmetic and Geometry - Manin Festschrift, Tschinkel, Yu., Zarhin, Yu. (eds) Progress in Mathematics, Basel: Birkhaüser, 2008

  32. Merkulov, S.A.: Lectures on props, Poisson geometry and deformation quantization. In: Poisson Geometry in Mathematics and Physics, Contemporary Mathematics Dito, G., Lu, J.H., Maeda, Y., Weinstein, A. (eds.), Providence, RI: Amer. Math. Soc., 2008, pp. 223–257

  33. Merkulov, S.A.: Permutahedra, HKR isomorphism and polydifferential Gerstenhaber-Schack complex. preprint arXiv:0710.0821. To appear in: “Higher Structure in Geometry and Physics”, Cattaneo, A.S., Xu, P., Giaquinto, A. (Eds.), Progress in Mathematics, Birkhaüser, available at http://www2.math.su.se/~sm/papers/perm.pdf

  34. Merkulov, S.A.: Lecture notes on differential geometry, Stockholm (2006), http://www.math.su.se/~sm/Geometry/sheaf.pdf, 2006

  35. Merkulov, S.A.: Deformation quantization of strongly homotopy Lie bialgebras. Preprint, http://arXiv.org/abs/math/0612431v1[math.QA], 2006

  36. Merkulov, S.A., Vallette, B.: Deformation theory of representations of prop(erad)s. (Preprint, http://arXiv.org/abs/0707.0889v1[math.QA], 2008, to appear in Crelle

  37. Mnev, P.: Notes on simplicial BF theory, Preprint, http://arXiv.org/abs/hep-th/0610326v3, 2003

  38. Polyak, M.: Feynman diagrams for pedesrtians and mathematicians. Preprint, http://arXiv.org/abs/math/0406251v1[math.GT], 2004

  39. Severa, P.: On the origin of the BV operator on odd symplectic supermanifolds. Preprint, http://arXiv.org/abs/math/0506331v1[math.DG], 2005

  40. Schwarz A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993)

    Article  MATH  ADS  Google Scholar 

  41. Schätz, F.: BVF-complex and higher homotopy structures. Preprint, http://arXiv.org/abs/math0611912v4[math.QA], 2008

  42. Stasheff, J.D.: On the homotopy associativity of H-spaces, I II. Trans. Amer. Math. Soc. 108, 272–292 & 293–312, (1963)

  43. Vallette B.: A Koszul duality for props. Trans. AMS 359, 4865–4943 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Weibel C.A.: An Introduction to Homological Algebra. Camb. Univ. Press, Cambridge (2003)

    Google Scholar 

  45. Weinstein A.: The modular automorphism group of a Poisson Manifold. J. Geom. and Phys. 23, 379–384 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Merkulov.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkulov, S.A. Wheeled Pro(p)file of Batalin-Vilkovisky Formalism. Commun. Math. Phys. 295, 585–638 (2010). https://doi.org/10.1007/s00220-010-0987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-0987-x

Keywords

Navigation