Skip to main content
Log in

Quantum Isometry Groups: Examples and Computations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this follow-up of [4], where the quantum isometry group of a noncommutative manifold has been defined, we explicitly compute such quantum groups for a number of classical as well as noncommutative manifolds including the spheres and the tori. It is also proved that the quantum isometry group of an isospectral deformation of a (classical or noncommutative) manifold is a suitable deformation of the quantum isometry group of the original (undeformed) manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banica T.: Quantum automorphism groups of small metric spaces. Pacific J. Math. 219(1), 27–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banica T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Connes A.: Noncommutative Geometry. Academic Press, London-New York (1994)

    MATH  Google Scholar 

  4. Goswami, D.: Quantum Group of Isometries in Classical and Noncommutative Geometry. Preprint, 2007

  5. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  MATH  ADS  Google Scholar 

  6. Fröhlich J., Grandjean O., Recknagel A.: Supersymmetric quantum theory and non-commutative geometry. Commun. Math. Phys. 203(1), 119–184 (1999)

    Article  MATH  ADS  Google Scholar 

  7. Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MATH  ADS  Google Scholar 

  8. Wang S.: Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q). J. Operator Theory 48, 573–583 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Wang S.: Deformation of Compact Quantum Groups via Rieffel’s Quantization. Commun. Math. Phys. 178, 747–764 (1996)

    Article  MATH  ADS  Google Scholar 

  10. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Quantum symmetries) (Les Houches, 1995), edited by A. Connes et al., Amsterdam: Elsevier 1998, pp. 845–884

  11. Helgason, S.: Topics in Harmonic analysis on homogeneous spaces. Boston-Basel-Stuttgart: Birkhäuser, 1981

  12. Hajac, P., Masuda, T.: Quantum Double-Torus. Comptes Rendus Acad. Sci. Paris 327(6), Ser. I, Math. 553–558, (1998)

  13. Maes A., Van Daele A.: Notes on Compact Quantum Groups. Niew Arch.Wisk (4) 16(1–2), 73–112 (1998)

    MATH  Google Scholar 

  14. Rieffel, M.A.: Deformation Quantization for actions of R d. Memoirs of the American Mathematical Society, Volume 106, Number 506, 1993

  15. Rieffel M.A.: Compact Quantum Groups associated with toral subgroups. Contemp. Math. 145, 465–491 (1992)

    MathSciNet  Google Scholar 

  16. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230(3), 539–579 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Soltan, P.M.: Quantum families of maps and quantum semigroups on finite quantum spaces. http://arXiv.org/list/math/0610922, 2006

  18. Woronowicz, S.L.: Pseudogroups, pseudospaces and Pontryagin duality. In: Proceedings of the International Conference on Mathematical Physics, Lausanne (1979), Lecture Notes in Physics 116, Berlin Heidelberg-New York: Springer, 1980, pp. 407–412

  19. Podles P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Commun. Math. Phys. 170, 1–20 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami.

Additional information

Communicated by A. Connes

The support from National Board of Higher Mathematics, India, is gratefully acknowledged.

Partially supported by the project ‘Noncommutative Geometry and QuantumGroups’ funded by the Indian National Science Academy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, J., Goswami, D. Quantum Isometry Groups: Examples and Computations. Commun. Math. Phys. 285, 421–444 (2009). https://doi.org/10.1007/s00220-008-0611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0611-5

Keywords

Navigation