Skip to main content

Advertisement

Log in

Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Proteins, their hydrolysates and peptides are produced from animal and plant sources with demonstrated bioactivities. Plants contribute more than half of the required human energy globally, thereby attracting more research and exploitation for the general well-being and reduction of oxidative stress. The protein components of plants became positive contributors to human health, using choice enzymatic method in order to release bioactive peptides. This review summarises the occurrence and mechanisms of plant antioxidative peptides for human nutrition and their applications. In addition, the need for food antioxidants and insights into some challenges associated with the use of antioxidative peptides were also provided. About 200 articles were analysed, of which ninety-seven most relevant articles were selected for this study. It is proposed that further safety and human studies will validate commercialization of antioxidative peptides for functional foods and human nutrition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98(2):594–619

    CAS  PubMed  Google Scholar 

  2. Ratnasari N, Walters M, Tsopmo A (2017) Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon 3(7):e00351

    PubMed  PubMed Central  Google Scholar 

  3. García MC, Puchalska P, Esteve C, Marina ML (2013) Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Tal 106:328–349

    Google Scholar 

  4. Esfandi R, Walters ME, Tsopmo A (2019) Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 5(4):e01538

    PubMed  PubMed Central  Google Scholar 

  5. Kamdem JP, Tsopmo A (2019) Reactivity of peptides within the food matrix. J Food Biochem 43(1):e12489

    PubMed  Google Scholar 

  6. Ashaolu TJ (2019) Applications of soy protein hydrolysates in the emerging functional foods: a review. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14380

    Article  Google Scholar 

  7. Ashaolu TJ (2019) A review on selection of fermentative microorganisms for functional foods and beverages: the production and future perspectives. Int J Food Sci Technol 54(8):2511–2519

    CAS  Google Scholar 

  8. Ashaolu TJ, Yupanqui CT (2018) Hypoallergenic and immunomodulatory prospects of pepsin-educed soy protein hydrolysates. Croat J Food Sci Technol 10(2):270–278

    Google Scholar 

  9. Adjonu R, Doran G, Torley P, Agboola S (2013) Screening of whey protein isolate hydrolysates for their dual functionality: influence of heat pre-treatment and enzyme specificity. Food Chem 136(3–4):1435–1443

    CAS  PubMed  Google Scholar 

  10. Ashaolu TJ, Yupanqui CT (2017) Suppressive activity of enzymatically-educed soy protein hydrolysates on degranulation in IgE-antigen complex-stimulated RBL-2H3 cells. Funct Foods Health Dis 7(7):545–561

    CAS  Google Scholar 

  11. Ashaolu TJ, Yantiam N, Yupanqui CT (2017) Immunomodulatory effects of pepsin-educed soy protein hydrolysate in rats and murine cells. Funct Foods Health Dis 7(11):889–900

    CAS  Google Scholar 

  12. Ashaolu TJ, Saibandith B, Yupanqui CT, Wichienchot S (2018) Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate. Int J Food Sci Technol 54(1):141–148

    Google Scholar 

  13. Rani S, Pooja K, Pal GK (2018) Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: computational derived approaches for bio-activity determination. Trends Food Sci Technol 80:61–70

    CAS  Google Scholar 

  14. Choe E, Min DB (2007) Chemistry of deep-fat frying oils. J Food Sci 5:R77–86

    Google Scholar 

  15. Brudzynski K, Sjaarda C, Maldonado-Alvarez L (2013) A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins? PLoS ONE 8(8):e72897

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Walters ME, Esfandi R, Tsopmo A (2018) Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods 7(10):172

    CAS  PubMed Central  Google Scholar 

  17. Labenski MT, Fisher AA, Lo HH, Monks TJ, Lau SS (2009) Protein electrophile-binding motifs: lysine-rich proteins are preferential targets of quinones. Drug Metab Disp 37(6):1211–1218

    CAS  Google Scholar 

  18. Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, Berra B (2010) Bio-farms for nutraceuticals. Endogenous antioxidants and radical scavengers. Springer, Boston, pp 52–67

    Google Scholar 

  19. Ogino K, Wang DH (2007) Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med Okayama 61(4):181–189

    CAS  PubMed  Google Scholar 

  20. Aldred S (2007) Oxidative and nitrative changes seen in lipoproteins following exercise. Atheroscler 192(1):1–8

    CAS  Google Scholar 

  21. Coscueta ER, Campos DA, Osório H, Nerli BB, Pintado M (2019) Enzymatic soy protein hydrolysis: a tool for biofunctional food ingredient production. Food Chem X 1:100006

    PubMed  PubMed Central  Google Scholar 

  22. Maestri E, Marmiroli M, Marmiroli N (2016) Bioactive peptides in plant-derived foodstuffs. J Prot 147:140–155

    CAS  Google Scholar 

  23. Coda R, Rizzello CG, Pinto D, Gobbetti M (2012) Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl Environ Microbiol 78(4):1087–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu MJ, Clarke FM, Rogers PJ, Young P, Sales N, O’Doherty PJ, Higgins VJ (2011) Identification of a protein with antioxidant activity that is important for the protection against beer ageing. Int J Mol Sci 12(9):6089–6103

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Amigo-Benavent M, Clemente A, Caira S, Stiuso P, Ferranti P, del Castillo MD (2014) Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean β-conglycinin. Electrophor 35(11):1582–1589

    CAS  Google Scholar 

  26. Tsopmo A (2015) Processing and impact on active components in food. Processing oats and bioactive components. Academic Press, USA, pp 361–368

    Google Scholar 

  27. Giuberti G, Gallo A, Masoero F (2011) A comparison of methods to quantify prolamin contents in cereals. Ital J Anim Sci 10(1):e2

    Google Scholar 

  28. Guo L, Harnedy PA, Li B, Hou H, Zhang Z, Zhao X, FitzGerald RJ (2014) Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci Technol 37(2):92–105

    CAS  Google Scholar 

  29. Sarmadi B, Aminuddin F, Hamid M, Saari N, Abdul-Hamid A, Ismail A (2012) Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chem 134(2):905–911

    CAS  PubMed  Google Scholar 

  30. Martorell P, Bataller E, Llopis S, Gonzalez N, Álvarez B, Montón F, Ortiz P, Ramon D, Genovés S (2013) A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity. PLoS ONE 8(5):e63283

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sila A, Bougatef A (2016) Antioxidant peptides from marine by-products: isolation, identification and application in food systems. J Funct Foods 21:10–26

    CAS  Google Scholar 

  32. Xu S, Shen Y, Li Y (2019) Antioxidant activities of sorghum kafirin alcalase hydrolysates and membrane/gel filtrated fractions. Antiox 8(5):131

    CAS  Google Scholar 

  33. Zhang F, Qu J, Thakur K, Zhang JG, Mocan A, Wei ZJ (2019) Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Food Chem 285:266–274

    CAS  PubMed  Google Scholar 

  34. Selamassakul O, Laohakunjit N, Kerdchoechuen O, Yang L, Maier CS (2018) Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Proc Biochem 70:179–187

    CAS  Google Scholar 

  35. Cotabarren J, Rosso AM, Tellechea M, García-Pardo J, Rivera JL, Obregón WD, Parisi MG (2019) Adding value to the chia (Salvia hispanica L.) expeller: production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chem 274:848–856

    CAS  PubMed  Google Scholar 

  36. Coelho MS, de Araujo AS, Latorres JM, de las Salas-Mellado MM (2019) In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocol 91:19–25

    Google Scholar 

  37. Lu X, Zhang L, Sun Q, Song G, Huang J (2019) Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 116:707–716

    CAS  PubMed  Google Scholar 

  38. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M (2010) Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem 118(3):559–565

    CAS  Google Scholar 

  39. Agyei D, Tsopmo A, Udenigwe CC (2018) Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 410(15):3463–3472

    CAS  PubMed  Google Scholar 

  40. Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44(9):2619–2623

    Google Scholar 

  41. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46(1):49–53

    CAS  PubMed  Google Scholar 

  42. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    CAS  PubMed  Google Scholar 

  43. Muñoz-Rugeles L, Galano A, Alvarez-Idaboy JR (2017) The role of acid–base equilibria in formal hydrogen transfer reactions: tryptophan radical repair by uric acid as a paradigmatic case. Phys Chem Chem Phy 19(23):15296–15309

    Google Scholar 

  44. Jiang Y, Zhang M, Lin S, Cheng S (2018) Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins. Food Res Int 105:836–844

    CAS  PubMed  Google Scholar 

  45. Leung R, Venus C, Zeng T, Tsopmo A (2018) Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chem 254:165–169

    CAS  PubMed  Google Scholar 

  46. Du Y, Esfandi R, Willmore WG, Tsopmo A (2016) Antioxidant activity of oat proteins derived peptides in stressed hepatic HepG2 cells. Antiox 5(4):39

    Google Scholar 

  47. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183

    CAS  PubMed  Google Scholar 

  48. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006

    CAS  Google Scholar 

  49. Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E (2018) Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol 17:297–314

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng Y, Zhang L, Sun W, Tang J, Lv Z, Xu Z, Yu H (2014) Protective effects of a wheat germ peptide (RVF) against H2O2-induced oxidative stress in human neuroblastoma cells. Biotechnol Lett 36(8):1615–1622

    CAS  PubMed  Google Scholar 

  51. Zhu KX, Guo X, Guo XN, Peng W, Zhou HM (2013) Protective effects of wheat germ protein isolate hydrolysates (WGPIH) against hydrogen peroxide-induced oxidative stress in PC12 cells. Food Res Int 53(1):297–303

    CAS  Google Scholar 

  52. Yu GC, Lv J, He H, Huang W, Han Y (2012) Hepatoprotective effects of corn peptides against carbon tetrachloride-induced liver injury in mice. J Food Biochem 36(4):458–464

    CAS  Google Scholar 

  53. van Aardt M, Duncan SE, Long TE, O'Keefe SF, Marcy JE, Sims SR (2004) Effect of antioxidants on oxidative stability of edible fats and oils: thermogravimetric analysis. J Agric Food Chem 52(3):587–591

    PubMed  Google Scholar 

  54. Jun SY, Park PJ, Jung WK, Kim SK (2004) Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol 219(1):20–26

    CAS  Google Scholar 

  55. Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2017) Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit Rev Food Sci Nutr 58:726–740

    PubMed  Google Scholar 

  56. Calkins MJ, Manczak M, Reddy PH (2012) Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharm 5(10):1103–1119

    CAS  Google Scholar 

  57. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4(1):5

    PubMed  PubMed Central  Google Scholar 

  58. Reddi S, Kapila R, Ajay Kumar Dang AK, Kapila S (2012) Evaluation of allergenic response of milk bioactive peptides using mouse mast cell. Milchwissenschaft-Milk Sci Int 67(2):189

    CAS  Google Scholar 

  59. Li CH, Matsui T, Matsumoto K, Yamasaki R, Kawasaki T (2002) Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. J Pept Sci Off Pub Eur Pept Soc 8(6):267–274

    CAS  Google Scholar 

  60. Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L (2008) The antihypertensive effect of peptides: a novel alternative to drugs? Peptides 29(6):1062–1071

    PubMed  Google Scholar 

  61. Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J (2010) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58(1):587–593

    CAS  PubMed  Google Scholar 

  62. Yang Y, Tao G, Liu P, Liu JI (2007) Peptide with angiotensin I-converting enzyme inhibitory activity from hydrolyzed corn gluten meal. J Agric Food Chem 55(19):7891–7895

    CAS  PubMed  Google Scholar 

  63. Zheng XQ, Liu XL, Wang XJ, Lin J, Li D (2006) Production of hydrolysate with antioxidative activity by enzymatic hydrolysis of extruded corn gluten. Appl Microbiol Biotechnol 73(4):763–770

    CAS  PubMed  Google Scholar 

  64. Cheung IW, Nakayama S, Hsu MN, Samaranayaka AG, Li-Chan EC (2009) Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem 57(19):9234–9242

    CAS  PubMed  Google Scholar 

  65. He R, Wang Y, Yang Y, Wang Z, Ju X, Yuan J (2019) Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J Funct Foods 55:211–219

    CAS  Google Scholar 

  66. Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H (2010) Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem 119(1):226–234

    CAS  Google Scholar 

  67. Chen J, Liu S, Ye R, Cai G, Ji B, Wu Y (2013) Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: purification and characterization. J Funct Foods 5(4):1684–1692

    CAS  Google Scholar 

  68. Loponen J (2004) Angiotensin converting enzyme inhibitory peptides in Finnish cereals: a database survey. Agric Food Sci 13:39

    CAS  Google Scholar 

  69. Hu F, Ci AT, Wang H, Zhang YY, Zhang JG, Thakur K, Wei ZJ (2018) Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Food Chem 261:301–310

    CAS  PubMed  Google Scholar 

  70. Motoi H, Kodama T (2003) Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Food/nahr 47(5):354–358

    CAS  Google Scholar 

  71. Nogata Y, Nagamine T, Yanaka M, Ohta H (2009) Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran. J Agric Food Chem 57(15):6618–6622

    CAS  PubMed  Google Scholar 

  72. Zhu K, Zhou H, Qian H (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Proc Biochem 41(6):1296–1302

    CAS  Google Scholar 

  73. Matsui T, Li CH, Osajima Y (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. J Pept Sci Off Pub Eur Pept Soc 5(7):289–297

    CAS  Google Scholar 

  74. Gluvić A, Ulrih NP (2019) Peptides derived from food sources: Antioxidative activities and interactions with model lipid membranes. Food Chem 287:324–332

    PubMed  Google Scholar 

  75. Rui X, Boye JI, Simpson BK, Prasher SO (2013) Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. J Funct Foods 5(3):1116–1124

    CAS  Google Scholar 

  76. Zhang T, Li Y, Miao M, Jiang B (2011) Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem 128(1):28–33

    CAS  PubMed  Google Scholar 

  77. Kou X, Gao J, Xue Z, Zhang Z, Wang H, Wang X (2013) Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Sci Technol 50(2):591–598

    CAS  Google Scholar 

  78. Li H, Aluko RE (2010) Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J Agric Food Chem 58(21):11471–11476

    CAS  PubMed  Google Scholar 

  79. Kodera T, Nio N (2006) Identification of an angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in 4 spontaneously hypertensive model rats. J Food Sci 71(3):164–173

    Google Scholar 

  80. Kuba M, Tana C, Tawata S, Yasuda M (2005) Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Proc Biochem 40(6):2191–2196

    CAS  Google Scholar 

  81. Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M (2003) Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci Biotechnol Biochem 67(6):1278–1283

    CAS  PubMed  Google Scholar 

  82. Chen JR, Okada T, Muramoto K, Suetsuna K, Yang SC (2002) Identification of angiotensin I-converting enzyme inhibitory peptides derived from the peptic digest of soybean protein. J Food Biochem 26(6):543–554

    Google Scholar 

  83. Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M (2003) Soymetide, an immunostimulating peptide derived from soybean β-conglycinin, is an fMLP agonist. FEBS Lett 540(1–3):206–210

    CAS  PubMed  Google Scholar 

  84. Lee JE, Bae IY, Lee HG, Yang CB (2006) Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica). Food Chem 99(1):143–148

    CAS  Google Scholar 

  85. Wu J, Aluko RE, Muir AD (2008) Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chem 111(4):942–950

    CAS  Google Scholar 

  86. Megías C, Yust MD, Pedroche J, Lquari H, Girón-Calle J, Alaiz M, Millán F, Vioque J (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52(7):1928–1932

    PubMed  Google Scholar 

  87. Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka D, Kwak CJ, Ikemura K, Takaoka M, Moriguchi S, Iino T (2006) Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci Biotechnol Biochem 70(5):1118–1126

    CAS  PubMed  Google Scholar 

  88. Wang C, Li B, Ao J (2012) Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem 134(2):1231–1238

    CAS  PubMed  Google Scholar 

  89. Liu M, Du M, Zhang Y, Xu W, Wang C, Wang K, Zhang L (2013) Purification and identification of an ACE inhibitory peptide from walnut protein. J Agric Food Chem 61(17):4097–4100

    CAS  PubMed  Google Scholar 

  90. Chen N, Yang H, Sun Y, Niu J, Liu S (2012) Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 38(2):344–349

    CAS  PubMed  Google Scholar 

  91. Ishiguro K, Sameshima Y, Kume T, Ikeda KI, Matsumoto J, Yoshimoto M (2012) Hypotensive effect of a sweetpotato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chem 131(3):774–779

    CAS  Google Scholar 

  92. Pihlanto A, Mäkinen S (2013) Intech Publishers: New York, NY, USA. https://www.intechopen.com/books/bioactive-food-peptides-in-health-and-disease. Accessed 3 Jan 2020

  93. Huang GJ, Chen HJ, Huang SH (2008) Sweet potato storage root trypsin inhibitor and their peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activity in vitro. Bot Stud 49:101–108

    CAS  Google Scholar 

  94. Marambe HK, Shand PJ, Wanasundara JP (2011) Release of angiotensin I-converting enzyme inhibitory peptides from flaxseed (Linum usitatissimum L.) protein under simulated gastrointestinal digestion. J Agric Food Chem 59(17):9596–9604

    CAS  PubMed  Google Scholar 

  95. Udenigwe CC, Adebiyi AP, Doyen A, Li H, Bazinet L, Aluko RE (2012) Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein. Food Chem 132(1):468–475

    CAS  PubMed  Google Scholar 

  96. Takayanagi T, Yokotsuka K (1999) Angiotensin I converting enzyme-inhibitory peptides from wine. Am J Enol Viticult 50(1):65–68

    CAS  Google Scholar 

  97. Yang Y, Marczak ED, Yokoo M, Usui H, Yoshikawa M (2003) Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco. J Agric Food Chem 51(17):4897–4902

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Ms. Itthanan Suttikhana for providing assistance with the graphics of the figures in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolulope Joshua Ashaolu.

Ethics declarations

Conflict of interest

The author has no interests which might be perceived as posing a conflict or bias.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashaolu, T.J. Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications. Eur Food Res Technol 246, 853–865 (2020). https://doi.org/10.1007/s00217-020-03479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03479-y

Keywords

Navigation